标准遗传算法(Genetic Algorithm)源码.
关键词: 标准 遗传算法 Genetic Algorithm GA
/* 代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。 要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为 ‘galog.txt’ 。输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量 的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。*/
/**************************************************************************/ /* This is a simple genetic algorithm implementation where the */ /* evaluation function takes positive values only and the */ /* fitness of an individual is the same as the value of the */ /* objective function */ /**************************************************************************/
#include <stdio.h> #include <stdlib.h> #include <math.h>
/* Change any of these parameters to match your needs */
#define POPSIZE 50 /* population size */ #define MAXGENS 1000 /* max. number of generations */ #define NVARS 3 /* no. of problem variables */ #define PXOVER 0.8 /* probability of crossover */ #define PMUTATION 0.15 /* probability of mutation */ #define TRUE 1 #define FALSE 0
int generation; /* current generation no. */ int cur_best; /* best individual */ FILE *galog; /* an output file */
struct genotype /* genotype (GT), a member of the population */ { double gene[NVARS]; /* a string of variables */ double fitness; /* GT‘s fitness */ double upper[NVARS]; /* GT‘s variables upper bound */ double lower[NVARS]; /* GT‘s variables lower bound */ double rfitness; /* relative fitness */ double cfitness; /* cumulative fitness */ };
struct genotype population[POPSIZE+1]; /* population */ struct genotype newpopulation[POPSIZE+1]; /* new population; */ /* replaces the */ /* old generation */
/* Declaration of procedures used by this genetic algorithm */
void initialize(void); double randval(double, double); void evaluate(void); void keep_the_best(void); void elitist(void); void select(void); void crossover(void); void Xover(int,int); void swap(double *, double *); void mutate(void); void report(void);
/***************************************************************/ /* Initialization function: Initializes the values of genes */ /* within the variables bounds. It also initializes (to zero) */ /* all fitness values for each member of the population. It */ /* reads upper and lower bounds of each variable from the */ /* input file `gadata.txt‘. It randomly generates values */ /* between these bounds for each gene of each genotype in the */ /* population. The format of the input file `gadata.txt‘ is */ /* var1_lower_bound var1_upper bound */ /* var2_lower_bound var2_upper bound ... */ /***************************************************************/
void initialize(void) { FILE *infile; int i, j; double lbound, ubound;
if ((infile = fopen("gadata.txt","r"))==NULL) { fprintf(galog,"\nCannot open input file!\n"); exit(1); }
/* initialize variables within the bounds */
for (i = 0; i < NVARS; i++) { fscanf(infile, "%lf",&lbound); fscanf(infile, "%lf",&ubound);
for (j = 0; j < POPSIZE; j++) { population[j].fitness = 0; population[j].rfitness = 0; population[j].cfitness = 0; population[j].lower[i] = lbound; population[j].upper[i]= ubound; population[j].gene[i] = randval(population[j].lower[i], population[j].upper[i]); } }
fclose(infile); }
/***********************************************************/ /* Random value generator: Generates a value within bounds */ /***********************************************************/
double randval(double low, double high) { double val; val = ((double)(rand()%1000)/1000.0)*(high - low) + low; return(val); }
/*************************************************************/ /* Evaluation function: This takes a user defined function. */ /* Each time this is changed, the code has to be recompiled. */ /* The current function is: x[1]^2-x[1]*x[2]+x[3] */ /*************************************************************/
void evaluate(void) { int mem; int i; double x[NVARS+1];
for (mem = 0; mem < POPSIZE; mem++) { for (i = 0; i < NVARS; i++) x[i+1] = population[mem].gene[i];
population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3]; } }
/***************************************************************/ /* Keep_the_best function: This function keeps track of the */ /* best member of the population. Note that the last entry in */ /* the array Population holds a copy of the best individual */ /***************************************************************/
void keep_the_best() { int mem; int i; cur_best = 0; /* stores the index of the best individual */
for (mem = 0; mem < POPSIZE; mem++) { if (population[mem].fitness > population[POPSIZE].fitness) { cur_best = mem; population[POPSIZE].fitness = population[mem].fitness; } } /* once the best member in the population is found, copy the genes */ for (i = 0; i < NVARS; i++) population[POPSIZE].gene[i] = population[cur_best].gene[i]; }
/****************************************************************/ /* Elitist function: The best member of the previous generation */ /* is stored as the last in the array. If the best member of */ /* the current generation is worse then the best member of the */ /* previous generation, the latter one would replace the worst */ /* member of the current population */ /****************************************************************/
void elitist() { int i; double best, worst; /* best and worst fitness values */ int best_mem, worst_mem; /* indexes of the best and worst member */
best = population[0].fitness; worst = population[0].fitness; for (i = 0; i < POPSIZE - 1; ++i) { if(population[i].fitness > population[i+1].fitness) { if (population[i].fitness >= best) { best = population[i].fitness; best_mem = i; } if (population[i+1].fitness <= worst) { worst = population[i+1].fitness; worst_mem = i + 1; } } else { if (population[i].fitness <= worst) { worst = population[i].fitness; worst_mem = i; } if (population[i+1].fitness >= best) { best = population[i+1].fitness; best_mem = i + 1; } } } /* if best individual from the new population is better than */ /* the best individual from the previous population, then */ /* copy the best from the new population; else replace the */ /* worst individual from the current population with the */ /* best one from the previous generation */
if (best >= population[POPSIZE].fitness) { for (i = 0; i < NVARS; i++) population[POPSIZE].gene[i] = population[best_mem].gene[i]; population[POPSIZE].fitness = population[best_mem].fitness; } else { for (i = 0; i < NVARS; i++) population[worst_mem].gene[i] = population[POPSIZE].gene[i]; population[worst_mem].fitness = population[POPSIZE].fitness; } } /**************************************************************/ /* Selection function: Standard proportional selection for */ /* maximization problems incorporating elitist model - makes */ /* sure that the best member survives */ /**************************************************************/
void select(void) { int mem,j,i; double sum = 0; double p;
/* find total fitness of the population */ for (mem = 0; mem < POPSIZE; mem++) { sum += population[mem].fitness; }
/* calculate relative fitness */ for (mem = 0; mem < POPSIZE; mem++) { population[mem].rfitness = population[mem].fitness/sum; } population[0].cfitness = population[0].rfitness;
/* calculate cumulative fitness */ for (mem = 1; mem < POPSIZE; mem++) { population[mem].cfitness = population[mem-1].cfitness + population[mem].rfitness; }
/* finally select survivors using cumulative fitness. */
for (i = 0; i < POPSIZE; i++) { p = rand()%1000/1000.0; if (p < population[0].cfitness) newpopulation[i] = population[0]; else { for (j = 0; j < POPSIZE;j++) if (p >= population[j].cfitness && p<population[j+1].cfitness) newpopulation[i] = population[j+1]; } } /* once a new population is created, copy it back */
for (i = 0; i < POPSIZE; i++) population[i] = newpopulation[i]; }
/***************************************************************/ /* Crossover selection: selects two parents that take part in */ /* the crossover. Implements a single point crossover */ /***************************************************************/
void crossover(void) { int mem, one; int first = 0; /* count of the number of members chosen */ double x;
for (mem = 0; mem < POPSIZE; ++mem) { x = rand()%1000/1000.0; if (x < PXOVER) { ++first; if (first % 2 == 0) Xover(one, mem); else one = mem; } } } /**************************************************************/ /* Crossover: performs crossover of the two selected parents. */ /**************************************************************/
void Xover(int one, int two) { int i; int point; /* crossover point */
/* select crossover point */ if(NVARS > 1) { if(NVARS == 2) point = 1; else point = (rand() % (NVARS - 1)) + 1;
for (i = 0; i < point; i++) swap(&population[one].gene[i], &population[two].gene[i]);
} }
/*************************************************************/ /* Swap: A swap procedure that helps in swapping 2 variables */ /*************************************************************/
void swap(double *x, double *y) { double temp;
temp = *x; *x = *y; *y = temp;
}
/**************************************************************/ /* Mutation: Random uniform mutation. A variable selected for */ /* mutation is replaced by a random value between lower and */ /* upper bounds of this variable */ /**************************************************************/
void mutate(void) { int i, j; double lbound, hbound; double x;
for (i = 0; i < POPSIZE; i++) for (j = 0; j < NVARS; j++) { x = rand()%1000/1000.0; if (x < PMUTATION) { /* find the bounds on the variable to be mutated */ lbound = population[i].lower[j]; hbound = population[i].upper[j]; population[i].gene[j] = randval(lbound, hbound); } } }
/***************************************************************/ /* Report function: Reports progress of the simulation. Data */ /* dumped into the output file are separated by commas */ /***************************************************************/
void report(void) { int i; double best_val; /* best population fitness */ double avg; /* avg population fitness */ double stddev; /* std. deviation of population fitness */ double sum_square; /* sum of square for std. calc */ double square_sum; /* square of sum for std. calc */ double sum; /* total population fitness */
sum = 0.0; sum_square = 0.0;
for (i = 0; i < POPSIZE; i++) { sum += population[i].fitness; sum_square += population[i].fitness * population[i].fitness; }
avg = sum/(double)POPSIZE; square_sum = avg * avg * POPSIZE; stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1)); best_val = population[POPSIZE].fitness;
fprintf(galog, "\n%5d, %6.3f, %6.3f, %6.3f \n\n", generation, best_val, avg, stddev); }
/**************************************************************/ /* Main function: Each generation involves selecting the best */ /* members, performing crossover & mutation and then */ /* evaluating the resulting population, until the terminating */ /* condition is satisfied */ /**************************************************************/
void main(void) { int i;
if ((galog = fopen("galog.txt","w"))==NULL) { exit(1); } generation = 0;
fprintf(galog, "\n generation best average standard \n"); fprintf(galog, " number value fitness deviation \n");
initialize(); evaluate(); keep_the_best(); while(generation<MAXGENS) { generation++; select(); crossover(); mutate(); report(); evaluate(); elitist(); } fprintf(galog,"\n\n Simulation completed\n"); fprintf(galog,"\n Best member: \n");
for (i = 0; i < NVARS; i++) { fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]); } fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness); fclose(galog); printf("Success\n"); } /***************************************************************/http://ahli./
|