分享

程序员面试题精选(01)-把二元查找树转变成排序的双向链表...

 ShangShujie 2007-02-28
程序员面试题精选(01)-把二元查找树转变成排序的双向链表
分类: 技术 | 标签: 就业, 找工作, 编程

  题目:输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。要求不能创建任何新的结点,只调整指针的指向。

  比如将二元查找树

                                            10

                                          /    \

                                        6       14

                                      /  \     /  \

                                    4     8  12    16
转换成双向链表

4=6=8=10=12=14=16

  分析:本题是微软的面试题。很多与树相关的题目都是用递归的思路来解决,本题也不例外。下面我们用两种不同的递归思路来分析。

  思路一:当我们到达某一结点准备调整以该结点为根结点的子树时,先调整其左子树将左子树转换成一个排好序的左子链表,再调整其右子树转换右子链表。最近链接左子链表的最右结点(左子树的最大结点)、当前结点和右子链表的最左结点(右子树的最小结点)。从树的根结点开始递归调整所有结点。

  思路二:我们可以中序遍历整棵树。按照这个方式遍历树,比较小的结点先访问。如果我们每访问一个结点,假设之前访问过的结点已经调整成一个排序双向链表,我们再把调整当前结点的指针将其链接到链表的末尾。当所有结点都访问过之后,整棵树也就转换成一个排序双向链表了。

参考代码:

首先我们定义二元查找树结点的数据结构如下:

struct BSTreeNode // a node in the binary search tree

{

      int          m_nValue; // value of node

      BSTreeNode  *m_pLeft;  // left child of node

      BSTreeNode  *m_pRight; // right child of node

};

思路一对应的代码:

///////////////////////////////////////////////////////////////////////

// Covert a sub binary-search-tree into a sorted double-linked list

// Input: pNode - the head of the sub tree

//        asRight - whether pNode is the right child of its parent

// Output: if asRight is true, return the least node in the sub-tree

//         else return the greatest node in the sub-tree

///////////////////////////////////////////////////////////////////////

BSTreeNode* ConvertNode(BSTreeNode* pNode, bool asRight)

{

      if(!pNode)

            return NULL;

 

      BSTreeNode *pLeft = NULL;

      BSTreeNode *pRight = NULL;

 

      // Convert the left sub-tree

      if(pNode->m_pLeft)

            pLeft = ConvertNode(pNode->m_pLeft, false);

 

      // Connect the greatest node in the left sub-tree to the current node

      if(pLeft)

      {

            pLeft->m_pRight = pNode;

            pNode->m_pLeft = pLeft;

      }

 

      // Convert the right sub-tree

      if(pNode->m_pRight)

            pRight = ConvertNode(pNode->m_pRight, true);

 

      // Connect the least node in the right sub-tree to the current node

      if(pRight)

      {

            pNode->m_pRight = pRight;

            pRight->m_pLeft = pNode;

      }

 

      BSTreeNode *pTemp = pNode;

 

      // If the current node is the right child of its parent,

      // return the least node in the tree whose root is the current node

      if(asRight)

      {

            while(pTemp->m_pLeft)

                  pTemp = pTemp->m_pLeft;

      }

      // If the current node is the left child of its parent,

      // return the greatest node in the tree whose root is the current node

      else

      {

            while(pTemp->m_pRight)

                  pTemp = pTemp->m_pRight;

      }

 

      return pTemp;

}

 

///////////////////////////////////////////////////////////////////////

// Covert a binary search tree into a sorted double-linked list

// Input: the head of tree

// Output: the head of sorted double-linked list

///////////////////////////////////////////////////////////////////////

BSTreeNode* Convert(BSTreeNode* pHeadOfTree)

{

      // As we want to return the head of the sorted double-linked list,

      // we set the second parameter to be true

      return ConvertNode(pHeadOfTree, true);

}

思路二对应的代码:

///////////////////////////////////////////////////////////////////////

// Covert a sub binary-search-tree into a sorted double-linked list

// Input: the head of the sub tree

// Output: the tail of the double-linked list

///////////////////////////////////////////////////////////////////////

BSTreeNode* ConvertNode(BSTreeNode* pNode)

{

      if(pNode == NULL)

            return NULL;

 

      BSTreeNode *pLastNodeInList = NULL;

      BSTreeNode *pCurrent = pNode;

 

      // Convert the left sub-tree

      if (pCurrent->m_pLeft != NULL)

            pLastNodeInList = ConvertNode(pCurrent->m_pLeft);

 

      // Put the current node into the double-linked list

      pCurrent->m_pLeft = pLastNodeInList;

      if(pLastNodeInList != NULL)

            pLastNodeInList->m_pRight = pCurrent;

 

      pLastNodeInList = pCurrent;

 

      // Convert the right sub-tree

      if (pCurrent->m_pRight != NULL)

            pLastNodeInList = ConvertNode(pCurrent->m_pRight);

 

      return pLastNodeInList;

}

 

///////////////////////////////////////////////////////////////////////

// Covert a binary search tree into a sorted double-linked list

// Input: the head of

// Output: the head of sorted double-linked list

///////////////////////////////////////////////////////////////////////

BSTreeNode* Convert(BSTreeNode* pHeadOfTree)

{

      BSTreeNode *pLastNodeInList = ConvertNode(pHeadOfTree);

 

      // Get the head of the double-linked list

      BSTreeNode *pHeadOfList = pLastNodeInList;

      while(pHeadOfList && pHeadOfList->m_pLeft)

            pHeadOfList = pHeadOfList->m_pLeft;

 

      return pHeadOfList;

}

 

 

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多