分享

数字基带信号的码型

 ekylin 2007-04-25
数字基带信号的码型 所谓数字基带信号,就是消息代码的电脉冲表示―― 电波形。在实际基带传输系统中,并非所有的原始数字基带信号都能在信道中传输,例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变;再例如,一般基带传输系统都是从接收到的基带信号中提取位同步信号,而位同步信号却又依赖于代码的码型,如果代码出现长时间的连 “0” 符号,则基带信号可能会长时间出现 0 电位,从而使位同步恢复系统难以保证位同步信号的准确性。实际的基带传输系统还可能提出其它要求,从而导致对基带信号也存在各种可能的要求。归纳起来,对传输用的基带信号的要求主要有两点: ( 1 )对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型; ( 2 )对所选的码型的电波形的要求,期望电波形适宜于在信道中传输。前一问题称为传输码型的选择,后一问题称为基带脉冲的选择。这是两个既彼此独立又相互联系的问题,也是基带传输原理中十分重要的两个问题。本节讨论前一问题,后一问题将在下面几节中讨论。 传输码(常称为线路码)的结构将取决于实际信道的特性和系统工作的条件。概括起来,在设计数字基带信号码型时应考虑以下原则: (1)码型中应不含直流分量,低频分量尽量少。 (2)码型中高频分量尽量少。这样既可以节省传输频带,提高信道的频带利用率,还可以减少串扰。串扰是指同一电缆内不同线对之间的相互干扰,基带信号的高频分量越大,则对邻近线对产生的干扰就越严重。 (3)码型中应包含定时信息。 (4)码型具有一定检错能力。若传输码型有一定的规律性,则就可根据这一规律性来检测传输质量,以便做到自动监测。 (5)编码方案对发送消息类型不应有任何限制,即能适用于信源变化。这种与信源的统计特性无关的性质称为对信源具有透明性。 (6)低误码增殖。对于某些基带传输码型,信道中产生的单个误码会扰乱一段译码过程,从而导致译码输出信息中出现多个错误,这种现象称为误码增殖。 (7)高的编码效率。 (8)编译码设备应尽量简单。 上述各项原则并不是任何基带传输码型均能完全满足,往往是依照实际要求满足其中若干项。 数字基带信号的码型种类繁多,下面仅以矩形脉冲组成的基带信号为例,介绍一些目前常用的基本码型。 数字基带信号的常用码型 双极性非归零( NRZ ) 码 在此编码中,“1”和“0”分别对应正、负电平,有以下特点: ( 1 )直流分量小。当二进制符 号 “1”、“0”等可能出现时,无直流成分; ( 2 )接收端判决门限为 0 ,容易设置并且稳定,因此抗干扰能力强; ( 3 )可以在电缆等无接地线上传输。( 1 )发送能量大,有利于提高接收端信噪比; ( 4 )在信道上占用频带较窄; ( 5 )有直流分量,将导致信号的失真与畸变;且由于直流分量的存在,无法使用一些交流耦合的线路和设备; ( 6)不能直接提取位同步信息(稍后将通过例题予以说明); 差分码 在差分码中, “1”、“0”分别用电平跳变或不变来表示。若用电平跳变来表示“1”,称为传号差分码(在电报通信中,常把“1”称为传号,把“0”称为空号),如图4-1 ( e ) 所示。若用电平跳变来表示 “0”,称为空号差分码。由图可见,这种码型在形式上与单极性或双极性码型相同,但它代表的信息符号与码元本身电位或极性无关,而仅与相邻码元的电位变化有关。差分码也称相对码,而相应地称前面的单极性或双极性码为绝对码。 差分码的特点是,即使接收端收到的码元极性与发送端完全相反,也能正确地进行判决。 AMI 码 AMI 码的全称是传号交替反转码。此方式是单极性方式的变形,即把单极性方式中的 “0”码仍与零电平对应,而“1”码 对应发送极性交替的正、负电平,如图 4-1 ( f )所示。这种码型实际上把二进制脉冲序列变为三电平的符号序列(故叫伪三元序列),其优点如下: ( 1 )在 “1”、“0”码不等概率情况下,也无直流成分,且零频附近低频分量小。因此,对具有变压器或其它交流隅合的传输信道来说,不易受隔直特性的影响。 ( 2 )若接收端收到的码元极性与发送端的完全相反,也能正确判决。 ( 3 )便于观察误码情况。 此外, AMI 码还有编译码电路简单等优点,是一种基本的线路码,得到广泛使用。 不过, AMI 码有一个重要缺点,即当它用来获取定时信息时,由于它可能出现长的连 0 串,因而会造成提取定时信号的困难 HDB 3 码 为了保持 AMI 码的优点而克服其缺点,人们提出了许多种类的改进 AMI 码,其中广泛为人们接受的解决办法是采用高密度双极性码 HDB n 。三阶高密度双极性码 HDB 3 码就是高密度双极性码中最重要的一种。 HDB 3 码的编码规则为:  ( 1 )先把消息代码变成 AMI 码,然后检查AMI码的连“0”串情况,当无3个以上连“0”码时,则这时的 AMI 码就是 HDB 3 码。 ( 2 )当出现 4 个或 4 个以上连 0 码时,则将每 4 个 连 “0”小段的第4个“0”变换成“非0”码 。这个由 “0”码改变来的“非0”码称为破 坏符号,用符号 V 表示,而原来的二进制码元序列中所有 的 “l”码 称为信码,用符号 B 表示。当信码序列中加入破坏符号以后,信码 B 与破坏符号 V 的正负必须满足如下两个条件: B 码和 V 码各自都应始终保持极性交替变化的规律,以便确保编好的码中没有直流成分; ② V 码必须与前一个码(信码 B )同极性,以便和正常的 AMI 码区分开来。如果这个条件得不到满足,那么应该在四个 连 “0”码的第一个“0”码位 置上加一个与 V 码同极性的补信码,用符号 表示,并做调整,使 B 码和 码合起来保持条件①中信码(含 B 及 )极性交替变换的规律。 HDB 3 的特点是明显的,它除了保持 AMI 码的优点外,还增加了使 连 “0” 串减少至不多于 3 个的优点,而不管信息源的统计特性如何。这对于定时信号的恢复是极为有利的。 HDB 3 是 CCITT 推荐使用的码型之一。 Manchester 码 Manchester( 曼彻斯特 )码又称为数字双相码或分相码。它的特点是每个码元用两个连续极性相反的脉冲来表示。 如 “l”码用正、负脉冲表示,“0”码用负 、正脉冲表示,如图 4-1 ( g )所示。该码的优点是无直流分量, 最长连 “0”、连“l”数为2, 定时信息丰富,编译码电路简单。但其码元速率比输入的信码速率提高了一倍。 分相码适用于数据终端设备在中速短距离上传输。如以太网采用分相码作为线路传输码。 分相码当极性反转时会引起译码错误,为解决此问题,可以采用差分码的概念,将数字分相码中用绝对电平表示的波形改为用电平相对变化来表示。这种码型称为条件分相码或差分曼彻斯特码。数据通信的令牌网即采用这种码型 CMI 码 CMI 码是传号反转码的简称,其编码规则为: “1”码交替用“00”和“11”表示;“0”码用“01 ” 表示,图 4-1 ( h )给出其编码的例子。 CMI 码的优点是没有直流分量,且有频繁出现波形跳变,便于定时信息提取,具有误码监测能力。 由于 CMI 码具有上述优点,再加上编、译码电路简单,容易实现,因此,在高次群脉冲编码调制终端设备中广泛用作接口码型,在速率低于 8448kb/s 的光纤数字传输系统中也被建议作为线路传输码型。 除了图 4-1 给出的线路码外,近年来,高速光纤数字传输系统中还应用到 5B6B 码,其是将每 5 位二元码输入信息编成 6 位二元码码组输出(分相码和 CMl 码属于 lB2B 类)。这种码型输出虽比输入增加 20 %的码速,但却换来了便于提取定时、低频分量小、同步迅速等优点。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多