三、人工智能理论的数学化趋势越来越突出 在现代科技高速发展的今天,许多科技理论都有赖于数学提供证明,有赖于数学对其的仿真。人工智能的发展也不例外,如何把人们的思维活动形式化、符号化,使其得以在计算机上实现,就成为人工智能研究的重要课题。在这方面,逻辑的有关理论、方法、技术起着十分重要的作用,它不仅为人工智能提供了有力的工具,而且也为知识的推理奠定了理论基础。人工智能中用到的逻辑可概括地分为两大类。一类是经典命题逻辑和一阶谓词逻辑,其特点是任何一个命题的真值或者是“真”,或者是“假”,二者必居其一。这一类问题可以用数学里的经典逻辑理论来解决。世界上事物千差万别,形形色色,除了确定性的事物或概念外,更广泛存在的是不确定性的事物或概念。这些不确定的事物是无法用经典逻辑理论来解决的。因此我们需要发展新的数学工具来表示这些问题。目前在人工智能中对不确定性的事物或概念是通过运用多值逻辑、模糊理论及概率来描述、处理的。多值逻辑、模糊理论及概率虽然都是通过在[!,"]上取值来刻画不确定性,但三者之间又存在着很大区别。多值逻辑是通过在真(")与假(!)之间增加了若干中介真值来描述事物为真的程度的,但它把各个中介真值看作是彼此完全分立的,界限分明。而模糊理论认为不同的中介真值之间没有明确的界限,表现了不同中介值相互贯通、渗透的特征,从而更好地反映了不确定性的本质。概率用来度量事件发生的可能性,而事件本身的含义是明确的,只是在一定的条件下它可能不发生,它与模糊理论是从两个不同的角度来描述不确定性的,因而有人称模糊理论描述了事物内在的不确定性,而概率描述的是事物外在的不确定性。由上可以看出,数学使得人工智能能很好的模拟人类智能,大大推动了人工智能的向前发展。现在人工智能中还有一些问题用现在的数学很难表示出来,相信在数学知识不断发展之后,这些问题能很快得到解决。 五、人工智能的发展现状及前景 目前绝大多数人工智能系统都是建立在物理符号系统假设之上的。在尚未出现能与物理符号系统假设相抗衡的新的人工智能理论之前,无论从设计原理还是从已取得的实验结果来看,Soar 在探讨智能行为的一般特征和人类认知的具体特征的艰难征途上都取得了有特色的进展或成就,处在人工智能研究的前沿。 |
|
来自: 昵称42663 > 《学习(人工智能)》