一、深度优先搜索 深度优先搜索就是在搜索树的每一层始终先只扩展一个子节点,不断地向纵深前进直到不能再前进(到达叶子节点或受到深度限制)时,才从当前节点返回到上一级节点,沿另一方向又继续前进。这种方法的搜索树是从树根开始一枝一枝逐渐形成的。
深度优先搜索亦称为纵向搜索。由于一个有解的问题树可能含有无穷分枝,深度优先搜索如果误入无穷分枝(即深度无限),则不可能找到目标节点。所以,深度优先搜索策略是不完备的。另外,应用此策略得到的解不一定是最佳解(最短路径)。
二、 重排九宫问题游戏 在一个3乘3的九宫中有1-8的8个数及一个空格随机摆放在其中的格子里。如下面左图所示。现在要求实现这样的问题:将该九宫调整为如下图右图所示的形式。调整规则是:每次只能将与空格(上,下或左,右)相临的一个数字平移到空格中。试编程实现。
| 2 | 8 | 3 | | 1 | 2 | 3 | - | 1 | | 4 | | 8 | | 4 |
| 7 | 6 | 5 | | 7 | 6 | 5 |
深度优先搜索的路径示意图:
|
|
|
|
|

|
三、广度优先搜索
在深度优先搜索算法中,是深度越大的结点越先得到扩展。如果在搜索中把算法改为按结点的层次进行搜索,本层的结点没有搜索处理完时,不能对下层结点进行处理,即深度越小的结点越先得到扩展,也就是说先产生的结点先得以扩展处理,这种搜索算法称为广度优先搜索法。
广度优先搜索路径示意图:
四、航班问题(来自《The Art of Java》) 一位顾客要预定一张从New York到Los Angeles的航班机票,下面是航班线路,请你为顾客找一种购票方案。
航班
|
距离
|
New York到Chicago |
900英里
|
Chicago到Denver |
1000英里
|
New York到Toronto |
500英里
|
New York到Denver |
1800英里
|
Toronto到Calgary |
1700英里
|
Toronto到Los Angeles |
2500英里
|
Toronto到Chicago |
500英里
|
Denver到Urbana |
1000英里
|
Denver到Houston |
1000英里
|
Houston到Los Angeles |
1500英里
|
Denver到Los Angeles |
1000英里
|
下面是用深度优先搜索求解的程序:
// Find connections using a depth-first search. import java.util.*; import java.io.*; // Flight information. class FlightInfo { String from; String to; int distance; boolean skip; // used in backtracking FlightInfo(String f, String t, int d) { from = f; to = t; distance = d; skip = false; } } class Depth { final int MAX = 100; // This array holds the flight information. FlightInfo flights[] = new FlightInfo[MAX]; int numFlights = 0; // number of entries in flight array Stack btStack = new Stack(); // backtrack stack public static void main(String args[]) { String to, from; Depth ob = new Depth(); BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); ob.setup(); try { System.out.print("From? "); from = br.readLine(); System.out.print("To? "); to = br.readLine(); ob.isflight(from, to); if(ob.btStack.size() != 0) ob.route(to); } catch (IOException exc) { System.out.println("Error on input."); } } // Initialize the flight database. void setup() { addFlight("New York", "Chicago", 900); addFlight("Chicago", "Denver", 1000); addFlight("New York", "Toronto", 500); addFlight("New York", "Denver", 1800); addFlight("Toronto", "Calgary", 1700); addFlight("Toronto", "Los Angeles", 2500); addFlight("Toronto", "Chicago", 500); addFlight("Denver", "Urbana", 1000); addFlight("Denver", "Houston", 1000); addFlight("Houston", "Los Angeles", 1500); addFlight("Denver", "Los Angeles", 1000); } // Put flights into the database. void addFlight(String from, String to, int dist) { if(numFlights < MAX) { flights[numFlights] = new FlightInfo(from, to, dist); numFlights++; } else System.out.println("Flight database full.\n"); } // Show the route and total distance. void route(String to) { Stack rev = new Stack(); int dist = 0; FlightInfo f; int num = btStack.size(); // Reverse the stack to display route. for(int i=0; i < num; i++) rev.push(btStack.pop()); for(int i=0; i < num; i++) { f = (FlightInfo) rev.pop(); System.out.print(f.from + " to "); dist += f.distance; } System.out.println(to); System.out.println("Distance is " + dist); } /* If there is a flight between from and to, return the distance of flight; otherwise, return 0. */ int match(String from, String to) { for(int i=numFlights-1; i > -1; i--) { if(flights[i].from.equals(from) && flights[i].to.equals(to) && !flights[i].skip) { flights[i].skip = true; // prevent reuse return flights[i].distance; } } return 0; // not found } // Given from, find any connection. FlightInfo find(String from) { for(int i=0; i < numFlights; i++) { if(flights[i].from.equals(from) && !flights[i].skip) { FlightInfo f = new FlightInfo(flights[i].from, flights[i].to, flights[i].distance); flights[i].skip = true; // prevent reuse return f; } } return null; } // Determine if there is a route between from and to. void isflight(String from, String to) { int dist; FlightInfo f; // See if at destination. dist = match(from, to); if(dist != 0) { btStack.push(new FlightInfo(from, to, dist)); return; } // Try another connection. f = find(from); if(f != null) { btStack.push(new FlightInfo(from, to, f.distance)); isflight(f.to, to); } else if(btStack.size() > 0) { // Backtrack and try another connection. f = (FlightInfo) btStack.pop(); isflight(f.from, f.to); } } }
解释:isflight()方法用递归方法进行深度优先搜索,它先调用match()方法检查航班的数据库,判断在from和to之间有没有航班可达。如果有,则获取目标信息,并将该线路压入栈中,然后返回(找到一个方案)。否则,就调用find()方法查找from与任意其它城市之间的线路,如果找到一条就返回描述该线路的FlightInfo对象,否则返回null。如果存在这样的一条线路,那么就把该线路保存在f中,并将当前航班信息压到栈的顶部,然后递归调用isflight()方法 ,此时保存在f.to中的城市成为新的出发城市.否则就进行回退,弹出栈顶的第一个节点,然后递归调用isflight()方法。该过程将一直持续到找到目标为止。
程序运行结果:
C:\java>java Depth From? New York To? Los Angeles New York to Chicago to Denver to Los Angeles Distance is 2900
C:\java>
深度优先搜索能够找到一个解,同时,对于上面这个特定问题,深度优先搜索没有经过回退,一次就找到了一个解;但如果数据的组织方式不同,寻找解时就有可能进行多次回退。因此这个例子的输出并不具有普遍性。而且,在搜索一个很长,但是其中并没有解的分支的时候,深度优先搜索的性能将会很差,在这种情况下,深度优先搜索不仅在搜索这条路径时浪费时间,而且还在向目标的回退中浪费时间。
再看对这个例子使用广度优先搜索的程序:
// Find connections using a breadth-first search. import java.util.*; import java.io.*; // Flight information. class FlightInfo { String from; String to; int distance; boolean skip; // used in backtracking FlightInfo(String f, String t, int d) { from = f; to = t; distance = d; skip = false; } } class Breadth { final int MAX = 100; // This array holds the flight information. FlightInfo flights[] = new FlightInfo[MAX]; int numFlights = 0; // number of entries in flight array Stack btStack = new Stack(); // backtrack stack public static void main(String args[]) { String to, from; Breadth ob = new Breadth(); BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); ob.setup(); try { System.out.print("From? "); from = br.readLine(); System.out.print("To? "); to = br.readLine(); ob.isflight(from, to); if(ob.btStack.size() != 0) ob.route(to); } catch (IOException exc) { System.out.println("Error on input."); } } // Initialize the flight database. void setup() { addFlight("New York", "Chicago", 900); addFlight("Chicago", "Denver", 1000); addFlight("New York", "Toronto", 500); addFlight("New York", "Denver", 1800); addFlight("Toronto", "Calgary", 1700); addFlight("Toronto", "Los Angeles", 2500); addFlight("Toronto", "Chicago", 500); addFlight("Denver", "Urbana", 1000); addFlight("Denver", "Houston", 1000); addFlight("Houston", "Los Angeles", 1500); addFlight("Denver", "Los Angeles", 1000); } // Put flights into the database. void addFlight(String from, String to, int dist) { if(numFlights < MAX) { flights[numFlights] = new FlightInfo(from, to, dist); numFlights++; } else System.out.println("Flight database full.\n"); } // Show the route and total distance. void route(String to) { Stack rev = new Stack(); int dist = 0; FlightInfo f; int num = btStack.size(); // Reverse the stack to display route. for(int i=0; i < num; i++) rev.push(btStack.pop()); for(int i=0; i < num; i++) { f = (FlightInfo) rev.pop(); System.out.print(f.from + " to "); dist += f.distance; } System.out.println(to); System.out.println("Distance is " + dist); } /* If there is a flight between from and to, return the distance of flight; otherwise, return 0. */ int match(String from, String to) { for(int i=numFlights-1; i > -1; i--) { if(flights[i].from.equals(from) && flights[i].to.equals(to) && !flights[i].skip) { flights[i].skip = true; // prevent reuse return flights[i].distance; } } return 0; // not found } // Given from, find any connection. FlightInfo find(String from) { for(int i=0; i < numFlights; i++) { if(flights[i].from.equals(from) && !flights[i].skip) { FlightInfo f = new FlightInfo(flights[i].from, flights[i].to, flights[i].distance); flights[i].skip = true; // prevent reuse return f; } } return null; } /* Determine if there is a route between from and to using breadth-first search. */ void isflight(String from, String to) { int dist, dist2; FlightInfo f; // This stack is needed by the breadth-first search. Stack resetStck = new Stack(); // See if at destination. dist = match(from, to); if(dist != 0) { btStack.push(new FlightInfo(from, to, dist)); return; } /* Following is the first part of the breadth-first modification. It checks all connecting flights from a specified node. */ while((f = find(from)) != null) { resetStck.push(f); if((dist = match(f.to, to)) != 0) { resetStck.push(f.to); btStack.push(new FlightInfo(from, f.to, f.distance)); btStack.push(new FlightInfo(f.to, to, dist)); return; } } /* The following code resets the skip fields set by preceding while loop. This is also part of the breadth-first modifiction. */ int i = resetStck.size(); for(; i!=0; i--) resetSkip((FlightInfo) resetStck.pop()); // Try another connection. f = find(from); if(f != null) { btStack.push(new FlightInfo(from, to, f.distance)); isflight(f.to, to); } else if(btStack.size() > 0) { // Backtrack and try another connection. f = (FlightInfo) btStack.pop(); isflight(f.from, f.to); } } // Reset skip field of specified flight. void resetSkip(FlightInfo f) { for(int i=0; i< numFlights; i++) if(flights[i].from.equals(f.from) && flights[i].to.equals(f.to)) flights[i].skip = false; } }
程序运行结果:
C:\java>java Breadth From? New York To? Los Angeles New York to Toronto to Los Angeles Distance is 3000
C:\java>
它找到了一个合理的解,但这不具有一般性。因为找到的第一条路径取决于信息的物理组织形式。

如果目标在搜索空间中隐藏得不是太深,那么广度优先搜索的性能会很好。
|