leon.li / 文章 / 传输线  transmission line 网络综合博...

0 0

   

传输线  transmission line 网络综合博物馆 - 长春工业大学松苑社区 http://t8.ccut.edu.cn

2008-05-22  leon.li
传输线  transmission line


图片:


图片:


图片:


图片:


图片:


图片:


图片:


图片:


图片:


图片:


图片:


图片:


图片:


图片:


图片:


图片:


图片:


图片:

chuanshuxian
传输线(卷名:电子学与计算机)
transmission line

以横电磁 (TEM)模的方式传送电能和(或)电信号的导波结构。传输线的特点是其横向尺寸远小于工作波长。主要结构型式有平行双导线、平行多导线、同轴线、带状 线,以及工作于准TEM模的微带线等(图1)(见电信电缆),它们都可借助简单的双导线模型进行电路分析。各种传输TE模、TM模,或其混合模的波导都可 认为是广义的传输线。波导中电磁场沿传播方向的分布规律与传输线上的电压、电流情形相似,可用等效传输线的观点分析。



传输线方程 又称电报方程,是说明传输线上电压U和电流I之间关系的微分方程组。按分布参数电路的观点,一小段传输线可等效为由分布电阻R1(欧/米)、分布电感 L1(亨/米)、分布电导G1(西/米)和分布电容C1(法/米)等集总元件构成的T型网络(对无耗线,R1=G1=0),实际的传输线表示为各段等效网 络的级联(图2)。



  设传输线与z 轴平行、时谐信号(时谐因子为 )的传输角频率为ω、分布阻抗Z1=R1+jωL1、分布导纳Y1=G1+jωC1,则传输线方程可写成
  (1)

其解U(z)和I(z)都由含因子的两项组成, 分别表示朝 ±z方向传播的行波,其中γ 称为传播常数,一般,传输线上的电压和电流各由上述两相反方向的行波合成,形成驻波分布。
  传播常数  描述电压或电流行波沿传输线行进过程中的衰减和相移的参量。通常,它是一个复常数
γ=α+jβ=       (2)

式中α 称为衰减常数,单位是奈/米或分贝/米(1奈/米=8.686分贝/米);β称为相移常数,单位是弧度/米。
  对于无耗线(R1=G1=0),有
     (3)

分别说明行波过程中没有衰减;以及波行进一个波长有2π弧度的相位延迟。式中μ 和ε 分别为传输线所在媒质的导磁率和介电常数。
  在传输线上行波的速度为
      (4)

与频率f无关。
  对于低损耗线(R1<<ωL1,G<<ωC1),近似有
      (5)


  特性阻抗  传输线上行波传播时的电压与电流之比。通常它也是复常数
      (6)

对无耗线
      (7)

它与频率无关,仅取决于线本身的物理参数和几何尺寸,可表征线的“特性”,故称特性阻抗。
  由于传输线横截面上电磁场的瞬时分布与二维静电场、静磁场的分布相似,因而可借助静电场和恒流磁场的方法分别计算分布参数C1和L1,从而算出特性阻抗Z0。通常是只计算C1,利用关系式(4),由公式Z0=1/υC1算出特性阻抗。
  常用的平行双线和同轴线(图1)的特性阻抗公式为平行线
    (8)

同轴线
    (9)

式中εr为同轴线填充介质的相对介电常数。
反射系数 信号从源端经传输线传向终端,当终端接有负载阻抗ZL≠Z0时,则传向负载的入射波将激起从负载向源方向的反射波。传输线上某点处反射液电压与入射波电 压之比为该点的电压反射系数,简称反射系数,通常是复数。对无耗线,反射系数 Γ=|Γ|,沿线模|Γ|保持不变而幅角ψ呈线性变化。在负载端(反射点),|Γ|与ψ的初始值仅与比值ZL/Z0有关。
  传输线上z点处的 Γ(z)与输入(视在)阻抗Z(z)=U(z)/I(z)的关系为
    (10)

式中,称为用Z0归一化的阻抗。当负载端Z(z)|z=L=Z0时,ΓL=0,线上只有传向负载的入射波,而没有从负载返回的反射波,称该传输线工作在阻抗匹配状态。
电压驻波比 传输线上的反射波与入射波叠加后形成驻波,即沿线各点的电压和电流的振幅不同,以1/2波长为周期而变化。电压(或电流)振幅具有最大值的点,称为电压 (或电流)驻波的波腹点;而振幅具有最小值的点,称为驻波的波谷点;振幅值等于零的点称为波节点。线上某电压波腹点与相邻波谷点的电压振幅之比称为电压驻 波比,简称驻波比;其倒数称为行波系数。



  电压与电流两种驻波曲线在空间上存在90°的相位差(波谷点位置相差1/4波长),即电压波腹点对应电流波谷点,反之亦然。图3是几种负载情形的电压驻波图型。 ρ为电压驻波比,则电压波腹点处的输入阻抗为ρZ0;波谷点处的输入阻抗为Z0/ρ。
  反射系数模|Γ|与驻波比ρ 的关系为
    (11)

|Γ|=0时,ρ=1;|Γ|=1时,ρ=∞,因此,驻波比ρ常用于描述传输线的工作状态。
阻抗匹配 目的是使传输线向负载有最大的功率转移,即要求负载阻抗与传输线的特性阻抗相等,相应地有|Γ|=0(或ρ=1)。如果负载阻抗与传输线的特性阻抗并不 相等,就需要在传输线的输出端与负载之间接入阻抗变换器,使后者的输入阻抗作为等效负载而与传输线的特性阻抗相等,从而实现传输线上|Γ|=0。阻抗变换 器的作用实质上是人为地产生一种反射波,使之与实际负载的反射波相抵消。在实际问题中,还需要考虑传输线输入端与信号源之间的阻抗匹配。
  高频馈电系统中的阻抗匹配十分重要,阻抗失配会使输送到负载的功率降低;传输大功率时易导致击穿;且由于输入阻抗的电抗分量随位置而改变,对信号源有频率牵引作用。
应用 传输线不仅用于传送电能和电信号,还可以构成电抗性的谐振元件。例如,长度小于1/4波长的终端短路或开路的传输线,其输入阻抗是感抗或容抗;长度可变 的短路线可用作调配元件(短截线匹配器)。又如长度为1/4波长的短路线或开路线分别等效于并联或串联谐振电路,称为谐振线;其中1/4波长短路线的输入 阻抗为无穷大,可用作金属绝缘支撑等。此外,还可利用分布参数传输线的延时特性制成仿真线等电路元件。
  参考书目
 鲍家善:《微波原理》,高等教育出版社,北京,1965。
 L.N.Dworsky, Modern Transmissiion Line Theory and Applications, John Wiley & Sons,New York,1979.
张善杰

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。如发现有害或侵权内容,请点击这里 或 拨打24小时举报电话:4000070609 与我们联系。

    猜你喜欢

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多