yunwang / 我的图书馆 / Gabor变换(2) - First we try, then we...

分享

   

Gabor变换(2) - First we try, then we...

2009-11-09  yunwang

二、Gabor函数

Gabor变换属于加窗傅立叶变换,Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabor函数与人眼的生物作用相仿,所以经常用作纹理识别上,并取得了较好的效果。二维Gabor函数可以表示为:

其中:

v的取值决定了Gabor滤波的波长,u的取值表示Gabor核函数的方向,K表示总的方向数。参数决定了高斯窗口的大小,这里取。程序中取4个频率(v=0, 1, ..., 3),8个方向(即K=8,u=0, 1, ... ,7),共32个Gabor核函数。不同频率不同方向的Gabor函数可通过下图表示:

图片来源:GaborFilter.html

图片来源:

三、代码实现

Gabor函数是复值函数,因此在运算过程中要分别计算其实部和虚部。代码如下:

private void CalculateKernel(int Orientation, int Frequency)
{
double real, img;
for(int x = -(GaborWidth-1)/2; x<(GaborWidth-1)/2+1; x++)
for(int y = -(GaborHeight-1)/2; y<(GaborHeight-1)/2+1; y++)
{
real = KernelRealPart(x, y, Orientation, Frequency);
img = KernelImgPart(x, y, Orientation, Frequency);
KernelFFT2[(x+(GaborWidth-1)/2) + 256 * (y+(GaborHeight-1)/2)].Re = real;
KernelFFT2[(x+(GaborWidth-1)/2) + 256 * (y+(GaborHeight-1)/2)].Im = img;
}
}
private double KernelRealPart(int x, int y, int Orientation, int Frequency)
{
double U, V;
double Sigma, Kv, Qu;
double tmp1, tmp2;
U = Orientation;
V = Frequency;
Sigma = 2 * Math.PI * Math.PI;
Kv = Math.PI * Math.Exp((-(V+2)/2)*Math.Log(2, Math.E));
Qu = U * Math.PI  / 8;
tmp1 = Math.Exp(-(Kv * Kv * ( x*x + y*y)/(2 * Sigma)));
tmp2 = Math.Cos(Kv * Math.Cos(Qu) * x + Kv * Math.Sin(Qu) * y) - Math.Exp(-(Sigma/2));
return tmp1 * tmp2 * Kv * Kv / Sigma;
}
private double KernelImgPart(int x, int y, int Orientation, int Frequency)
{
double U, V;
double Sigma, Kv, Qu;
double tmp1, tmp2;
U = Orientation;
V = Frequency;
Sigma = 2 * Math.PI * Math.PI;
Kv = Math.PI * Math.Exp((-(V+2)/2)*Math.Log(2, Math.E));
Qu = U * Math.PI  / 8;
tmp1 = Math.Exp(-(Kv * Kv * ( x*x + y*y)/(2 * Sigma)));
tmp2 = Math.Sin(Kv * Math.Cos(Qu) * x + Kv * Math.Sin(Qu) * y) - Math.Exp(-(Sigma/2));
return tmp1 * tmp2 * Kv * Kv / Sigma;
}

有了Gabor核函数后就可以采用前文中提到的“离散二维叠加和卷积”或“快速傅立叶变换卷积”的方法求解Gabor变换,并对变换结果求均值和方差作为提取的特征。32个Gabor核函数对应32次变换可以提取64个特征(包括均值和方差)。由于整个变换过程代码比较复杂,这里仅提供测试代码供下载。该代码仅计算了一个101×101尺寸的Gabor函数变换,得到均值和方差。代码采用两种卷积计算方式,从结果中可以看出,快速傅立叶变换卷积的效率是离散二维叠加和卷积的近50倍。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多

    ×
    ×

    ¥.00

    微信或支付宝扫码支付:

    开通即同意《个图VIP服务协议》

    全部>>