分享

TRIZ入门导读(五)

 苹果树 2009-11-25
TRIZ入门导读(五)
发布时间:2007-10-24      黑龙江省科学技术厅

[2007-10-24]


TRIZ理论的基本内容
创新等级

    当阿奇舒勒对250万个专利进行研究时,发现可以根据创新程度的不同,将这些专利技术解决方法分为5个“创新等级”。


    第1级:技术系统的简单改进,所要求技术在系统相关的某行业范围内(32%); 
    第2级:包括技术矛盾解决方法的发明,要求系统相关的不同行业知识(45%); 
    第3级:包含物理矛盾解决方法的发明,要求系统相关行业以外的知识(18%); 
    第4级:包含突破性解决方法的新技术,要求不同科学领域知识(4 %); 
    第5级:新现象的发现(1%)。(括号中的为占总专利比重。) 


    对于第1级阿奇舒勒认为不算是创新,而对于第5级,他认为“如果一个人在旧的系统还没有完全失去发展希望时,就选择一个完全新的技术系统,则成功之路和被社会接受的道路是艰难而又漫长的。因此发明几种在原来基础上的改进是更好的策略”。他建议将这两个等级排除在外,TRIZ工具对于其他3个等级创新作用更大。一般来说,等级2,3称为“革新(Innovative)”,等级4称为“创新(Inventive)”。


    理想化发明创造是有级别的,级别越高,创新设计的过程越困难,则产品的市场竞争力越强。高级别产品的发明不仅需要设计人员自身的素质,更需要行业以外或全人类的已有研究成果。企业要不断地吸收不同行业的知识创新成果,并在自己的产品中应用,以永远保持企业的市场竞争力。发明创造的理想状态是理想解的实现,尽可能使企业的产品接近于其理想解是产品创新的指导思想。确定所设计产品的理想解是设计人员综合素质的体现。


    把所研究的对象理想化是自然科学的基本方法之一。理想化是对客观世界中所存在物体的一种抽象,这种抽象客观世界既不存在,又不能通过实验验证。理想化的物体是真实物体存在的一种极限状态,对于某些研究起着重要作用,如物理学中的理想气体、理想液体,几何学中的点与线等。在TRIZ中理想化是一种强有力的工具,在创新过程中起着重要作用。


    TRIZ理论,在解决问题之初,首先抛开各种客观限制条件,通过理想化来定义问题的最终理想解(ideal final result,IFR),以明确理想解所在的方向和位置,保证在问题解决过程中沿着此目标前进并获得最终理想解,从而避免了传统创新涉及方法中缺乏目标的弊端,提升了创新设计的效率。如果将TRIZ创造性解决问题的方法比做通向胜利的桥,那么最终理想解就是这座桥的桥墩。 


    在大森林里有一个溶洞,这个洞又高又大,里面一个洞套着一个洞,村里的人发现了它,准备把它开发成旅游胜地。为了能够详细地向游人介绍这个溶洞,村里人想测量一下这个溶洞中各个洞的高度。要求既不能影响溶洞的环境,而且要注意不花费村民的大量经费,方法也要简单易行才好。请问你能找到一个又好又简单的方法么?请考虑理想化的要求。 

    答案就是用氢气球来测量溶洞的高度,这样既不损坏周围的环境,而且经济、简单。 


    理想化是科学研究中创造性思维的基本方法之一。它主要是在大脑之中设立理想的模型,通过思想实验的方法来研究客体运动的规律。一般的操作程序为:首先要对经验事实进行抽象,形成一个理想客体,然后通过想象,在观念中模拟其实验过程,把客体的现实运动过程简化和升华为一种理想化状态,使其更接近理想指标的要求。


    理想化方法最为关键的部分是思想实验,或称理想实验。它是从一定的原理出发,在观念中按照实验的模型展开的实验结论。思想实验是形象思维和逻辑思维共同作用的结果,同时也体现了理想化和现实性的对立统一。诚然,思想实验还不是科学实践活动,它的结论还需要科学实验等实践活动来检验,但这并不能否认思想实验在理论创新中的地位和作用。新的理论往往与常识相距甚远,人们常常为传统观念所束缚,不易走向理论创新,因此,借助于思想实验来进行理论创新以及对新理论加以认同,不失为一种有效的手段。


    理想化方法的另一个关键部分是如何设立理想模型。理想模型建立的根本指导思想是最优化原则,即在经验的基础上设计最优的模型结构,同 时也要充分考虑到现实存在的各种变量的容忍程度,把理想化与现实性结合起来。理想中的优化模型往往具有超前性,这是创新的标志。但是,超前性只有在现实条件所容许的情况下,其模型的构造才具有可行性。应当指出的是,理想模型的设计并不一定非要迁就现实的条件,有时候也需要改造现实,改变现实中存在的不合理之处,特别是需要彻底扭转人们传统的落后的思维方式和生活方式,为理想模型的建立和实施创造条件。


    科学历史上,很多科学家正是通过理想化获得划时代的科学发现的,著名的有伽利略、牛顿、爱因斯坦、卢瑟福等。伽利略注意到,当一个球从一个斜面上滚下又滚上第2个斜面上时,球在第2个斜面上所达到的高度同在第1个斜面上达到的高度近似相等。他断定这一微小差异是由摩擦而产生的结果,如果摩擦消失,那么第2次的高度完全等于第1次的高度。他又推想,在完全没有摩擦的情况下,不管第2个斜面的倾斜度多么小,它在第2个斜面上总要达到相同的高度。如果第2个斜面的斜度完全消除,那么球从第1个斜面滚下来之后,将以恒速在无限长的平面上永远不停地运动下去。当然,这个实验是一个理想实验,无法真实地操作,因为摩擦力永远也不会被消除,也无法找到和制作一个无限长的平面。伽利略是理想实验的先驱,后来牛顿把伽利略的惯性原理确立为动力学第一定律,即惯性定律。


    牛顿继承了伽利略的传统,在思索万有引力问题时也设计了一个著名的理想实验:抛物体运动实验。一块石头投出,由于自身重力,被迫离开直线路径,如果单有初始投掷,理应按直线运动,但其却在空中描出了曲线,最终落在地面上。投掷的速度越大,它落地前走得越远。于是,我们可以假设当速度增到如此之大,在落地前描出1, 2, 5, 100, 1 000千米长的弧线,直到最后超出了地球的限度,进入空间永不触及地球。这个实验在当时的物质条件下是无论如何不能实现的。牛顿在真实的抛体运动的基础上,发挥思维的力量把抛物体的速度推到地球引力范围之外。爱因斯坦是20世纪卓越的理想实验大师。爱因斯坦的狭义相对论源于追光理想实验。爱因斯坦创建广义相对论的突破口为等效原理,亦源于理想实验。


    卢瑟福的原子有核模型是科学史上最著名的理想模型之一。1907年,卢瑟福为了验证导师的原子模型,建议研究生观察镭发射出的高速α粒子穿过薄的金属箔片后的偏转情况,结果出人意料。卢瑟福以α粒子实验为事实根据,发挥思维的力量建立起类似太阳系结构的原子有核模型,开创了原子能时代。 


    TRIZ的一个基本观点是“系统是朝着不断增加的理想状态进化的”。技术系统理想状态包括3个方面内容:①系统的主要目的是提供一定功能。传统思想认为,为了实现系统的某种功能,必须建立相应的装置或设备;而TRIZ则认为,为了实现系统的某种功能不必引入新的装置和设备,而只需对实现该功能的方法和手段进行调整和优化。②任何系统都是朝着理想化方向发展的,也就是向着更可靠、简单有效的方向发展。系统的理想状态一般是不存在的,但当系统越接近理想状态,结构就越简单、成本就越低、效率就越高。③理想化意味着系统或子系统中现有资源的最优利用。

 

    技术系统的主要目的是提供一定功能。传统思想认为“为了得到这样和那样的功能,就必须建立这样和那样的装置或设备。”TRIZ则认为“为了得到这样和那样的功能,而不对系统引入新的装置和设备。” 


    任何技术系统都是朝着理想化发展,也就是更为可靠、简单、有效。理想系统是不存在的,但当技术系统越接近理想状态时就越简单、成本越低效率也更高。理想化也意味着系统或子系统中现有资源的最大化利用。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多