十八小子 / 图形 / 神奇的分形艺术

0 0

   

神奇的分形艺术

2010-05-22  十八小子
神奇的分形艺术(一):无限长的曲线可能围住一块有限的面积
icon2 Brain Storm | icon4 2007-07-05 9:45| icon321 Comments | 本文内容遵从CC版权协议 转载请注明出自matrix67.com


    很多东西都是吹神了的,其中麦田圈之谜相当引人注目。上个世纪里人们时不时能听见某个农民早晨醒了到麦田地一看立马吓得屁滚尿流的故事。上面这幅图就是97年在英国Silbury山上发现的麦田圈,看上去大致上是一个雪花形状。你或许会觉得这个图形很好看。看了下面的文字后,你会发现这个图形远远不是“好看”可以概括的,它的背后还有很多东西。

    在说明什么是分形艺术前,我们先按照下面的方法构造一个图形。看下图,首先画一个线段,然后把它平分成三段,去掉中间那一段并用两条等长的线段代替。这样,原来的一条线段就变成了四条小的线段。用相同的方法把每一条小的线段的中间三分之一替换为等边三角形的两边,得到了16条更小的线段。然后继续对16条线段进行相同的操作,并无限地迭代下去。下图是这个图形前五次迭代的过程,可以看到这样的分辨率下已经不能显示出第五次迭代后图形的所有细节了。这样的图形可以用Logo语言很轻松地画出来。


    你可能注意到一个有趣的事实:整个线条的长度每一次都变成了原来的4/3。如果最初的线段长为一个单位,那么第一次操作后总长度变成了4/3,第二次操作后总长增加到16/9,第n次操作后长度为(4/3)^n。毫无疑问,操作无限进行下去,这条曲线将达到无限长。难以置信的是这条无限长的曲线却“始终只有那么大”。

        
    当把三条这样的曲线头尾相接组成一个封闭图形时,有趣的事情发生了。这个雪花一样的图形有着无限长的边界,但是它的总面积却是有限的。换句话说,无限长的曲线围住了一块有限的面积。有人可能会问为什么面积是有限的。虽然从上面的图上看结论很显然,但这里我们还是要给出一个简单的证明。三条曲线中每一条的第n次迭代前有4^(n-1)个长为(1/3)^(n-1)的线段,迭代后多出的面积为4^(n-1)个边长为(1/3)^n的等边三角形。把4^(n-1)扩大到4^n,再把所有边长为(1/3)^n的等边三角形扩大为同样边长的正方形,总面积仍是有限的,因为无穷级数Σ4^n/9^n显然收敛。这个神奇的雪花图形叫做Koch雪花,其中那条无限长的曲线就叫做Koch曲线。他是由瑞典数学家Helge von Koch最先提出来的。本文最开头提到的麦田圈图形显然是想描绘Koch雪花。

    分形这一课题提出的时间比较晚。Koch曲线于1904年提出,是最早提出的分形图形之一。我们仔细观察一下这条特别的曲线。它有一个很强的特点:你可以把它分成若干部分,每一个部分都和原来一样(只是大小不同)。这样的图形叫做“自相似”图形(self-similar),它是分形图形(fractal)最主要的特征。自相似往往都和递归、无穷之类的东西联系在一起。比如,自相似图形往往是用递归法构造出来的,可以无限地分解下去。一条Koch曲线中包含有无数大小不同的Koch曲线。你可以对这条曲线的尖端部分不断放大,但你所看到的始终和最开始一样。它的复杂性不随尺度减小而消失。另外值得一提的是,这条曲线是一条连续的,但处处不光滑(不可微)的曲线。曲线上的任何一个点都是尖点。

    分形图形有一种特殊的计算维度的方法。我们可以看到,在有限空间内就可以达到无限长的分形曲线似乎已经超越了一维的境界,但说它是二维图形又还不够。Hausdorff维度就是专门用来对付这种分形图形的。简单地说,Hausdorff维度描述分形图形中整个图形的大小与一维大小的关系。比如,正方形是一个分形图形,因为它可以分成四个一模一样的小正方形,每一个小正方形的边长都是原来的1/2。当然,你也可以把正方形分成9个边长为1/3的小正方形。事实上,一个正方形可以分割为a^2个边长为1/a的小正方形。那个指数2就是正方形的维度。矩形、三角形都是一样,给你a^2个同样的形状才能拼成一个边长为a倍的相似形,因此它们都是二维的。我们把这里的“边长”理解为一维上的长度,那个1/a则是两个相似形的相似比。如果一个自相似形包含自身N份,每一份的一维大小都是原来的1/s,则这个相似形的Hausdorff维度为log(N)/log(s)。一个立方体可以分成8份,每一份的一维长度都是原来的一半,因此立方体的维度为log(8)/log(2)=3。同样地,一个Koch曲线包含四个小Koch曲线,大小两个Koch曲线的相似比为1/3,因此Koch曲线的Hausdorff维度为log(4)/log(3)。它约等于1.26,是一个介于1和2之间的实数。

    我们常说分形图形是一门艺术。把不同大小的Koch雪花拼接起来可以得到很多美丽的图形。如果有MM看了前面的文字一句也不懂,下面这些图片或许会让你眼前一亮。

放图前留下一句话:
Matrix67原创
转贴请注明出处




    虽然有些东西似乎是显然的,但一个完整的定义仍然很有必要。比如,大多数人并不知道函数的连续性是怎么定义的,虽然大家一直在用。有人可能会说,函数是不是连续的一看就知道了嘛,需要定义么。事实上,如果没有严格的定义,你很难把下面两个问题说清楚。
    你知道吗,除了常函数之外还存在其它没有最小正周期的周期函数。考虑一个这样的函数:它的定义域为全体实数,当x为有理数时f(x)=1,当x为无理数时f(x)=0。显然,任何有理数都是这个函数的一个最小正周期,因为一个有理数加有理数还是有理数,而一个无理数加有理数仍然是无理数。因此,该函数的最小正周期可以任意小。如果非要画出它的图象,大致看上去就是两根直线。请问这个函数是连续函数吗?如果把这个函数改一下,当x为无理数时f(x)=0,当x为有理数时f(x)=x,那新的函数是连续函数吗?
    Cauchy定义专门用来解决这一类问题,它严格地定义了函数的连续性。Cauchy定义是说,函数f在x=c处连续当且仅当对于一个任意小的正数ε,你总能找到一个正数δ使得对于定义域上的所有满足c-δ< x <c+δ的x都有f(c)-ε<f(x)<f(c)+ε。直观地说,如果函数上有一点P,对于任意小的ε,P点左右一定范围内的点与P的纵坐标之差均小于ε,那么函数在P点处连续。这样就保证了P点两旁的点与P无限接近,也就是我们常说的“连续”。这又被称作为Epsilon-Delta定义,可以写成“ε-δ定义”。
    有了Cauchy定义,回过头来看前面的问题,我们可以推出:第一个函数在任何一点都不连续,因为当ε< 1时,δ范围内总存在至少一个点跳出了ε的范围;第二个函数只在x=0处是连续的,因为此时不管ε是多少,只需要δ比ε小一点就可以满足ε-δ定义了。
    在拓扑学中,也有类似于ε-δ的连续性定义。假如一个函数f(t)对应空间中的点,对于任意小的正数ε,总能找到一个δ使得定义域(t-δ,t+δ)对应的所有点与f(t)的距离都不超过ε,那么我们就说f(t)所对应的曲线在点f(t)处连续。


    回到我们的话题,如何构造一条曲线使得它可以填满整个平面。在这里我们仅仅说明存在一条填满单位正方形的曲线就够了,因为将此单位正方形平铺在平面上就可以得到填满整个平面的曲线。大多数人可能会想到下面这种构造方法:先画一条单位长的曲线,然后把它变成一个几字形,接着把每一条水平的小横线段变成一个几字形,然后不断迭代下去,最后得到的图形一定可以填满整个单位正方形。我们甚至可以递归地定义出一个描述此图形的函数:将定义域平均分成五份,第二和第四份对应两条竖直线段上的点,并继续对剩下的三个区间重复进行这种操作。这个函数虽然分布得有些“不均匀”,但它确实是一个合法的函数。最后的图形显然可以填充一个正方形,但它是不是一条曲线我们还不知道呢。稍作分析你会发现这条“曲线”根本不符合前面所说的ε-δ定义,考虑任何一个可以无限细分的地方(比如x=1/2处),只要ε<1/2,δ再小其范围内也有一条竖线捅破ε的界线。这就好像当n趋于无穷时sin(nx)根本不是一条确定的曲线一样,因为某个特定的函数值根本不能汇聚到一点。考虑到这一点,我们能想到的很多可以填满平面的“曲线”都不是真正意义上的连续曲线。为了避免这样的情况出现,这条曲线必须“先把自己周围填满再延伸出去”,而填满自己周围前又必须先填满“更小规模的周围”。这让我们联想到分形图形。


    德国数学家David Hilbert发现了这样一种可以填满整个单位正方形的分形曲线,他称它为Hilbert曲线。我们来看一看这条曲线是怎么构造出来的。首先,我们把一个正方形分割为4个小正方形,然后从左下角的那个小正方形开始,画一条线经过所有小正方形,最后到达右下角。现在,我们把这个正方形分成16个小正方形,目标同样是从左下角出发遍历所有的格子最后到达右下角。而在这之前我们已经得到了一个2x2方格的遍历方法,我们正好可以用它。把两个2x2的格子原封不动地放在上面两排,右旋90度放在左下,左旋90度放在右下,然后再补三条线段把它们连起来。现在我们得到了一种从左下到右下遍历4x4方格的方法,而这又可以用于更大规模的图形中。用刚才的方法把四个4x4的方格放到8x8的方格中,我们就得到了一条经过所有64个小方格的曲线。不断地这样做下去,无限多次地迭代后,每个方格都变得无穷小,最后的图形显然经过了方格上所有的点,它就是我们所说的Hilbert曲线。下图是一个迭代了n多次后的图形,大致上反映出Hilbert曲线的样子。
        

    根据上面这种方法,我们可以构造出函数f(t)使它能映射到单位正方形中的所有点。Hilbert曲线首先经过单位正方形左下1/4的所有点,然后顺势北上,东征到右上角,最后到达东南方的1/4正方形,其中的每一个阶段都是一个边长缩小了一半的“小Hilbert曲线”。函数f(t)也如此定义:[0,1/4]对应左下角的小正方形中所有的点,[1/4,1/2]就对应左上角,依此类推。每个区间继续划分为四份,依次对应面积为1/16的正方形,并无限制地这么细分下去。注意这里的定义域划分都是闭区间的形式,这并不会发生冲突,因为所有m/4^n处的点都是两个小Hilbert曲线的“交接处”。比如那个f(1/4)点就是左上左下两块1/4正方形共有的,即单位正方形正左边的那一点。这个函数是一条根正苗红的连续曲线,完全符合ε-δ定义,因为f(t-δ)和f(t+δ)显然都在f(t)的周围。
    Hilbert曲线是一条经典的分形曲线。它违背了很多常理。比如,把Hilbert曲线平铺在整个平面上,它就成了一条填满整个平面的曲线。两条Hilbert曲线对接可以形成一个封闭曲线,而这个封闭曲线竟然没有内部空间。回想我们上次介绍的Hausdorff维度,你会发现这条曲线是二维的,因为它包含自身4份,每一份的一维大小都是原来的一半,因此维度等于log(4)/log(2)。这再一次说明了它可以填满整个平面。

    Hilbert曲线的价值在于建立一维空间与二维空间一一对应的关系。Hilbert曲线可以看作是一个一维空间到二维空间的映射,也就是说我们证明了直线上的点和平面上的点一样多(集合的势相同)。Hilbert曲线也是一种遍历二维格点的方法,它同样可以用来证明自然数和有理数一样多。如果你已经知道此结论的Cantor证明,你会立刻明白Hilbert遍历法的证明,这里就不再多说了。当然,Hilbert曲线也可以扩展到三维空间,甚至更高维的空间,从而建立一维到任意多维的映射关系。下图就是一个三维Hilbert曲线(在迭代过程中)的样子。

在所有的分形图形中,Sierpinski三角形可能是大家最熟悉的了,因为它在OI题目中经常出现,OJ上的题目省选题目中都有它的身影。这篇文章将简单介绍Sierpinski三角形的几个惊人性质。如果你以前就对Sierpinski三角形有一些了解,这篇文章带给你的震撼将更大,因为你会发现Sierpinski三角形竟然还有这些用途。

Sierpinski三角形的构造
      
    和之前介绍的两种图形一样,Sierpinski三角形也是一种分形图形,它是递归地构造的。最常见的构造方法如上图所示:把一个三角形分成四等份,挖掉中间那一份,然后继续对另外三个三角形进行这样的操作,并且无限地递归下去。每一次迭代后整个图形的面积都会减小到原来的3/4,因此最终得到的图形面积显然为0。这也就是说,Sierpinski三角形其实是一条曲线,它的Hausdorff维度介于1和2之间。

    Sierpinski三角形的另一种构造方法如下图所示。把正方形分成四等份,去掉右下角的那一份,并且对另外三个正方形递归地操作下去。挖个几次后把脑袋一歪,你就可以看到一个等腰直角的Sierpinski三角形。

      

    Sierpinski三角形有一个神奇的性质:如果某一个位置上有点(没被挖去),那么它与原三角形顶点的连线上的中点处也有点。这给出另一个诡异的Sierpinski三角形构造方法:给出三角形的三个顶点,然后从其中一个顶点出发,每次随机向任意一个顶点移动1/2的距离(走到与那个顶点的连线的中点上),并在该位置作一个标记;无限次操作后所有的标记就组成了Sierpinski三角形。下面的程序演示了这一过程,程序在fpc 2.0下通过编译。对不起用C语言的兄弟了,我不会C语言的图形操作。
{$ASSERTIONS+}

uses graph,crt;

const
   x1=320;  y1=20;
   x2=90;   y2=420;
   x3=550;  y3=420;
   density=2500;
   timestep=10;

var
   gd,gm,i,r:integer;
   x,y:real;

begin
   gd:=D8bit;
   gm:=m640x480;
   InitGraph(gd,gm,'');
   Assert(graphResult=grOk);

   x:=x1;
   y:=y1;
   for i:=1 to density do
   begin
      r:=random(3);
      if r=0 then
      begin
         x:=(x+x1)/2;
         y:=(y+y1)/2;
      end
      else if r=1 then
      begin
         x:=(x+x2)/2;
         y:=(y+y2)/2;
      end
      else begin
         x:=(x+x3)/2;
         y:=(y+y3)/2;
      end;
      PutPixel(round(x),round(y),white);
      Delay(timestep);
   end;
   CloseGraph;
end.


Sierpinski三角形与杨辉三角
    第一次发现Sierpinski三角形与杨辉三角的关系时,你会发现这玩意儿不是一般的牛。写出8行或者16行的杨辉三角,然后把杨辉三角中的奇数和偶数用不同的颜色区别开来,你会发现杨辉三角模2与Sierpinski三角形是等价的。也就是说,二项式系数(组合数)的奇偶性竟然可以表现为一个分形图形!在感到诧异的同时,冷静下来仔细想想,你会发现这并不难理解。
      
    我们下面说明,如何通过杨辉三角奇偶表的前四行推出后四行来。可以看到杨辉三角的前四行是一个二阶的Sierpinski三角形,它的第四行全是奇数。由于奇数加奇数等于偶数,那么第五行中除了首尾两项为1外其余项都是偶数。而偶数加偶数还是偶数,因此中间那一排连续的偶数不断地两两相加必然得到一个全是偶数项的“倒三角”。同时,第五行首尾的两个1将分别产生两个和杨辉三角前四行一样的二阶Sierpinski三角形。这正好组成了一个三阶的Sierpinski三角形。显然它的最末行仍然均为奇数,那么对于更大规模的杨辉三角,结论将继续成立。

Sierpinski三角形与Hanoi塔
    有没有想过,把Hanoi塔的所有状态画出来,可以转移的状态间连一条线,最后得到的是一个什么样的图形?二阶Hanoi塔反正也只有9个节点,你可以自己试着画一下。不断调整节点的位置后,得到的图形大概就像这个样子:
      
    如果把三阶的Hanoi塔表示成无向图的话,得到的结果就是三阶的Sierpinski三角形。下面的这张图说明了这一点。把二阶Hanoi塔对应的无向图复制两份放在下面,然后在不同的柱子上为每个子图的每个状态添加一个更大的盘子。新的图中原来可以互相转移的状态现在仍然可以转移,同时还出现了三个新的转移关系将三个子图连接在了一起。重新调整一下各个节点的位置,我们可以得到一个三阶的Sierpinski三角形。
  
    显然,对于更大规模的Hanoi塔问题,结论仍然成立。

Sierpinski三角形与位运算
    编程画出Sierpinski三角形比想象中的更简单。下面的两个代码(实质相同,仅语言不同)可以打印出一个Sierpinski三角形来。
const
   n=1 shl 5-1;
var
   i,j:integer;
begin
   for i:=0 to n do
   begin
      for j:=0 to n do
         if i and j = j then write('#')
         else write(' ');
      writeln;
   end;
   readln;
end.

#include <stdio.h>
int main()
{
    const int n=(1<<5)-1;
    int i,j;
    for (i=0; i<=n; i++)
    {
        for (j=0; j<=n; j++)
           printf( (i&j)==j ? "#" : " ");
        printf("\n");
    }    
    getchar();
    return 0;
}

    上面两个程序是一样的。程序将输出:
#                              
##                              
# #                            
####                            
#   #                          
##  ##                          
# # # #                        
########                        
#       #                      
##      ##                      
# #     # #                    
####    ####                    
#   #   #   #                  
##  ##  ##  ##                  
# # # # # # # #                
################                
#               #              
##              ##              
# #             # #            
####            ####            
#   #           #   #          
##  ##          ##  ##          
# # # #         # # # #        
########        ########        
#       #       #       #      
##      ##      ##      ##      
# #     # #     # #     # #    
####    ####    ####    ####    
#   #   #   #   #   #   #   #  
##  ##  ##  ##  ##  ##  ##  ##  
# # # # # # # # # # # # # # # #
################################


    这个程序告诉我们:在第i行第j列上打一个点当且仅当i and j=j,这样最后得到的图形就是一个Sierpinski三角形。这是为什么呢?其实原因很简单。把i和j写成二进制(添加前导0使它们位数相同),由于j不能大于i,因此只有下面三种情况:
    情况一:
    i = 1?????
    j = 1?????
    问号部分i大于等于j
    i的问号部分记作i',j的问号部分记作j'。此时i and j=j当且仅当i' and j'=j'

    情况二:
    i = 1?????
    j = 0?????
    问号部分i大于等于j
    i的问号部分记作i',j的问号部分记作j'。此时i and j=j当且仅当i' and j'=j'

    情况三:
    i = 1?????
    j = 0?????
    问号部分i小于j
    此时i and j永远不可能等于j。i' < j'意味着i'和j'中首次出现数字不同的那一位上前者为0,后者为1,那么i和j做and运算时这一位的结果是0,与j不等。

    注意到,去掉一个二进制数最高位上的“1”,相当于从这个数中减去不超过它的最大的2的幂。观察每一种情况中i,j和i',j'的实际位置,不难发现这三种情况递归地定义出了整个Sierpinski三角形。
    嘿!发现没有,我通过Sierpinski三角形证明了这个结论:组合数C(N,K)为奇数当且仅当N and K=K。这篇文章很早之前就计划在写了,前几天有人问到这个东西,今天顺便也写进来。
    另外,把i and j=j 换成i or j=n也可以打印出Sierpinski三角形来。i and j=j表示j的二进制中有1的位置上i也有个1,那么此时i or (not j)结果一定全为1(相当于程序中的常量n),因此打印出来的结果与原来的输出正好左右镜像。

    考虑函数f(z)=z^2-0.75。固定z0的值后,我们可以通过不断地迭代算出一系列的z值:z1=f(z0), z2=f(z1), z3=f(z2), ...。比如,当z0 = 1时,我们可以依次迭代出:
z1 = f(1.0) = 1.0^2 - 0.75 = 0.25
z2 = f(0.25) = 0.25^2 - 0.75 = -0.6875
z3 = f(-0.6875) = (-0.6875)^2 - 0.75 = -0.2773
z4 = f(-0.2773) = (-0.2773)^2 - 0.75 = -0.6731
z5 = f(-0.6731) = (-0.6731)^2 - 0.75 = -0.2970
...
    可以看出,z值始终在某一范围内,并将最终收敛到某一个值上。
    但当z0=2时,情况就不一样了。几次迭代后我们将立即发现z值最终会趋于无穷大:
z1 = f(2.0) = (2.0)^2 - 0.75 = 3.25
z2 = f(3.25) = (3.25)^2 - 0.75 = 9.8125
z3 = f(9.8125) = (9.8125)^2 - 0.75 = 95.535
z4 = f(95.535) = (95.535)^2 - 0.75 = 9126.2
z5 = f(9126.2) = (9126.2)^2 - 0.75 = 83287819.2
...
    经过计算,我们可以得到如下结论:当z0属于[-1.5, 1.5]时,z值始终不会超出某个范围;而当z0小于-1.5或大于1.5后,z值最终将趋于无穷。
    现在,我们把这个函数扩展到整个复数范围。对于复数z0=x+iy,取不同的x值和y值,函数迭代的结果不一样:对于有些z0,函数值约束在某一范围内;而对于另一些z0,函数值则发散到无穷。由于复数对应平面上的点,因此我们可以用一个平面图形来表示,对于哪些z0函数值最终趋于无穷,对于哪些z0函数值最终不会趋于无穷。我们用深灰色表示不会使函数值趋于无穷的z0;对于其它的z0,我们用不同的颜色来区别不同的发散速度。由于当某个时候|z|>2时,函数值一定发散,因此这里定义发散速度为:使|z|大于2的迭代次数越少,则发散速度越快。这个图形可以编程画出。和上次一样,我用Pascal语言,因为我不会C的图形操作。某个MM要过生日了,我把这个自己编程画的图片送给她^_^

{$ASSERTIONS+}

uses graph;

type
   complex=record
      re:real;
      im:real;
   end;

operator * (a:complex; b:complex) c:complex;
begin
   c.re := a.re*b.re - a.im*b.im;
   c.im := a.im*b.re + a.re*b.im;
end;

operator + (a:complex; b:complex) c:complex;
begin
   c.re := a.re + b.re;
   c.im := a.im + b.im;
end;

var
   z,c:complex;
   gd,gm,i,j,k:integer;
begin
   gd:=D8bit;
   gm:=m640x480;
   InitGraph(gd,gm,'');
   Assert(graphResult=grOk);

   c.re:=-0.75;
   c.im:=0;
   for i:=-300 to 300 do
   for j:=-200 to 200 do
   begin
      z.re:=i/200;
      z.im:=j/200;
      for k:=0 to 200 do
      begin
         if sqrt(z.re*z.re + z.im*z.im) >2 then break
         else z:=(z*z)+c;
      end;
      PutPixel(i+300,j+200,k)
   end;

   readln;
   CloseGraph;
end.


    代码在Windows XP SP2,FPC 2.0下通过编译,麻烦大家帮忙报告一下程序运行是否正常(上次有人告诉我说我写的绘图程序不能编译)。在我这里,程序运行的结果如下:



    这个美丽的分形图形表现的就是f(z)=z^2-0.75时的Julia集。考虑复数函数f(z)=z^2+c,不同的复数c对应着不同的Julia集。也就是说,每取一个不同的c你都能得到一个不同的Julia集分形图形,并且令人吃惊的是每一个分形图形都是那么美丽。下面的六幅图片是取不同的c值得到的分形图形。你可能不相信这样一个简单的构造法则可以生成这么美丽的图形,这没什么,你可以改变上面程序代码中c变量的值来亲自验证。

c = 0.45, -0.1428
  

c = 0.285, 0.01
  

c = 0.285, 0
  

c = -0.8, 0.156
  

c = -0.835, -0.2321
  

c = -0.70176, -0.3842
  



    类似地,我们固定z0=0,那么对于不同的复数c,函数的迭代结果也不同。由于复数c对应平面上的点,因此我们可以用一个平面图形来表示,对于某个复数c,函数f(z)=z^2+c从z0=0开始迭代是否会发散到无穷。我们同样用不同颜色来表示不同的发散速度,最后得出的就是Mandelbrot集分形图形:
    

    前面说过,分形图形是可以无限递归下去的,它的复杂度不随尺度减小而消失。Mandelbrot集的神奇之处就在于,你可以对这个分形图形不断放大,不同的尺度下你所看到的景象可能完全不同。放大到一定时候,你可以看到更小规模的Mandelbrot集,这证明Mandelbrot集是自相似的。下面的15幅图演示了Mandelbrot集的一个放大过程,你可以在这个过程中看到不同样式的分形图形。







网上可以找到很多小程序实现Mandelbrot集的放大过程。把上面给出的代码改一改,你也可以写出一个这样的程序来。
做人要厚道,转贴请注明出处
Posted in Brain Storm
Tags: , , , , , , , , ,
Trackback: http://www.matrix67.com/blog/archives/292/trackback

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。如发现有害或侵权内容,请点击这里 或 拨打24小时举报电话:4000070609 与我们联系。

    猜你喜欢

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多