分享

各种品牌变频器的维修方法和实例 - bz1020的日志 - 网易博客

 龙口卧龙泉 2010-08-08

各种品牌变频器的维修方法和实例

默认分类 2010-04-01 20:21:27 阅读66 评论0 字号:

各种品牌变频器的维修方法和实例

 

佳灵变频器故障与维修

一、过流保护FL

1.1实例

    (1) 一台T9-7.5KW变频器一启动就跳“FL”

    分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IPM模块(FP40R12KE3)基本判断没有问题,故障确定为驱动板JL35GP-250-1DB保护电路起控,为进一步判断问题,将IGBT模块拆下后将FL保护线断开,再通电运行,实测上半桥的驱动电压时发现有一路与其他两路有明显区别(运行时为直流2.5伏左右,停止时为9伏左右,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。

    (2)当出现三相输出电压不平衡时也可基本判断为A3120损坏.

    (3)特殊故障现象:一台J9-200KW变频器用于离心风机,电机静止启动时容易出现过流保护,若在电机自由慢速运行时,变频器不能启动,并出现FL故障代码,经检查模块与驱动电路没有异常现象,可能出在过流信号处理这一部位,将三路互感器拆下后发现V相互感器直流电阻明显比其它两只低.将此元件从机器中拆除,故障排除

     佳灵变频器驱动电路易损件:IN4745,IN4746,A3120,MCP602,L7805

 

二、 过压与欠压保护

     佳灵变频器过压,欠压保护都是将直流母线电压分压通过集成运放MCP602与基准电压信号进行比较.当放大器翻转后将会出现保护,过压保护门槛值为3.02伏,欠压保护门槛值为1.62伏.保护电压值等于母线电压除以信号再乘以保护门槛值;即过压保护值为直流800伏,欠压为直流400伏.

    2.1过压保护(OUD)

    过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。

    2.1 实例

    一台J9-75KW变频器在停机时跳“OUD”。

     分析与维修:在修这台机器之前,首先要搞清楚“OUD”报警的原因何在,这是因为变频器在减速或停止输出时,电动机因惯性继续自由运转,转子绕组切割旋转磁场,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,将减速时间从20秒延长到120秒,故障排除.

 

三、欠压(LU)

    主要原因:输入电压过低或者缺相,整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻上面有可能导致欠压.还有就是电压检测电路发生故障而出现欠压问题。

3.1 举例

    (1) 一台T9-45kW变频器一启动出现LU.

分析与维修:经检查这台变频器的整流桥充电电阻都是好的,因为这台变频器是利用可控硅的来短接充电电阻的.因此认为故障可能出在可控硅或其控制回路,利用倍压整流将主控板单独通上电源,运行变频器后利用示波器观测驱动信号,该信号为2.8KHZ,占空比为15%,信号幅度为12伏.驱动信号正常,可硅控不导通.此器件损坏.

    (2) 频率只能达到1-2HZ.

     此现象也为欠压保护起控.原因是程序CD10欠压再起动功能动作,将CD10内部数据改为0即能出现LU保护.

 

四、过热(FL)

  过热也是一种比较常见的故障,主要原因:环境温度过高,风机堵转,温度传感器性能不良,马达过热。

举例

    一台T9-90KW变频通电就跳“FL”且不能复位。

    分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题出现在温度保护电路,此机温度保护元件为85度常闭感温包,经测量后为感温包断路引起保护.

    一台37kW变频器客户反映在运行十多分钟后跳“FL”。

分析与维修:因为是在运行一段时间后才有故障,所以温度传感器坏的可能性不大,可能变频器的温度确实太高,通电后发现变频器顶端风机风量很小,估计为散热片被堵(因该变频器是用在化纤行业),经打扫后开机风机运行良好,运行数小时后没有再跳此故障。

 

五、三相输出不平衡

  输出不平衡一般表现为转速不稳,马达抖动,主要原因:模块坏,驱动电路坏,电抗器坏等。

5.1举例

    一台T9-90KW变频器,输出电压相差100V左右。

分析与维修:打开机器初步在线检查逆变模块(FF300R12KE3)没发现问题,于示波器测量6路驱动电路也没发现其中有一相上臂驱动信号幅度不够.将此路A3120换掉后故障排除

 

六、过载

  发生过载时首先应该分析一下到底是马达过载还是变频器自身过载,一般来讲马达由于过载能力较强,只要变频器CD09值设置正确,一般不会出现马达过载.而变频器本身由于过载能力较差从面容易引起过载报警.当变频器带动负载出现OL时,输出电流与额定电流大小相差不大.出现OL闪烁.如果过载严重,变频器将停止输出.并以FL过流形式保护. 

 

七、开关电源损坏

  佳灵所有机型均采用了新型脉宽集成控制器FA5511来调整开关电源的输出,同时FA5511还带有电流检测,电压反馈等功能,当发生开关电源不工作时,.应先检查各路输出有无短路现象,佳 灵开关电源易损件:FA5511.B4410.IN4745,K1317.风机12伏电源整流二极管等.

 

八.ERR通讯故障

  佳灵变频器手操面板内部用PIC817芯片,主芯片用N87C196.两芯片通讯线为6芯排线,在连线较长或多台机器同时使用手操板连接线时容易出现通讯中断,现象为ERR闪烁,可以通过穿钢管,使用屏蔽线,加磁环等方法.当出现ERR长时间保持时.可以先更换主芯片试试,另外通讯线路中的集成块75179可能损坏.

 

康沃变频器主要故障及处理

 1  引言

    近年来随着电力电子技术、功率半导体器件及变频控制理论的发展,变频器作为一种智能控制电源已被广泛应用于各行业,90年代初期主要以进口品牌为主如富士、三菱、西门子、ABB等,90年代中期国产变频器日渐出现在市场上,主要以通用型变频器为主。目前国产变频器技术已逐渐成熟,国产变频器市场占有率也逐渐提高,作为国内变频器专业生产厂家之一的深圳康沃电气技术有限公司,经过短短几年时间的发展,康沃变频器凭借其优越的性能,日渐被客户所接受。康沃公司目前生产的变频器主要有通用型G1/G2系列、风机水泵专用型P1/P2系列、注塑机专用型ZS/ZC系列及高性能单相变频器S1系列,其它各类专用变频器、更高性能的矢量型变频器也将陆续推向市场。本文主要讲述康沃变频器通用型在应用中出现的常见故障及处理方法,以便用户参考。

2  通用型变频器主电路

    目前市场上国产变频器主要以低压通用型变频器为主,为下文叙述方便,现简要介绍通用型变频器的主电路结构,从变频器结构上分有交-交变频器与交-直-交变频器,从变频性质分主要电压源型变频器与电流源型变频器,目前国内生产的变频器主要以电压源型交-直-交变频器为主,其结构示意如图1示。

    其主电路主要由整流电路、滤波电路、逆变电路及制动单元等几部分构成,其中IGBT(绝缘栅双极晶体管)构成了变频器主要硬件,各部分电路功能简述如下:

(1) 整流电路

    由VD1~VD6组成三相桥式全波整流电路将三相交流电整流成直流电。

(2) 滤波电路

    整流电路输出的直流电压为脉动的直流电压,因而需滤波电路滤去电压波纹,同时它还在整流电路与逆变电路起到储能作用。

(3) 逆变电路

    由开关管V1~V6构成逆变电路将直流电压逆变成三相频率、电压可调的交流电以驱动三相电动机,是变频器实现变频的关键环节。

(4) 限流电路

    由限流电阻R及开关K构成,由于上电瞬间滤波电容端电压为零,上电瞬间电容充电电流较大,过大的电流可能损坏整流电路,为保护整流电路在变频器上电瞬间限流电阻串联到直流回路中,当电容充电到一定时间后通过开关K将电阻短路。

(5) 制动电路

    由制动电阻RB及开关管VB构成,主要作用是用于消耗电动机反馈回来的能量,避免过高的泵升电压损坏变频器。

    康沃通用型G/P系列变频器根据功率等级的不同,所选用的IGBT主要有欧派克、三菱、东芝等不同品牌,变频器功率在18.5kW以下的机型主电路主要采用集整流、逆变、制动电路和温度检测为一体的七单元模块构成,22kW及以上的机型采用整流模块和三路两单元逆变模块构成。

3  康沃变频器常见故障及处理方法

    随着应用的不断推广,康沃品牌越来越受用户欢迎,为让用户进一步了解康沃变频器、方便用户使用,现将康沃变频器在使用中常出现的故障现象及处理方法例举如下:

(1) 故障P.OFF 

    康沃变频器上电显示P.OFF延时1~2s后显示0,表示变频器处于待机状态。在应用中若出现变频器上电后一直显示P.OFF而不跳0现象,主要原因有输入电压过低、输入电源缺相及变频器电压检测电路故障,处理时应先测量电源三相输入电压,R、S、T端子正常电压为三相380V,如果输入电压低于320V或输入电源缺相,则应排除外部电源故障。如果输入电源正常可判断为变频器内部电压检测电路或缺相保护故障,对于康沃G1/P1系列90kW及以上机型变频器,故障原因主要为内部缺相检测电路异常,缺相检测电路由两个单相380V/18.5V变压器及整流电路构成,故障原因大多为检测变压器故障,处理时可测量变压器的输出电压是否正常。

(2) 故障ER08

    康沃变频器出现ER08故障代码表示变频器处于欠压故障状态。主要原因有输入电源过低或缺相、变频器内部电压检测电路异常、变频器主电路异常。通用变频器电压输入范围在320V~460V,在实际应用中变频器满载运行时,当输入电压低于340V时可能会出现欠压保护,这时应提高电网输入电压或变频器降额使用;若输入电压正常,变频器在运行中出现ER08故障,则可判断为变频器内部故障,如图1示可能为主回路中KS接触器跳开,使限流电阻在变频器运行时串联到主回路中,这时若变频器带负载运行便会出现ER08故障,这时可排除是否为接触器损坏或接触器控制电路异常;若变频器主回路正常,出现ER08报警的原因大多为电压检测电路故障,一般变频器的电压检测电路为开关电源的一组输出,经过取样、比较电路后给CPU处理器,当超过设定值时,CPU根据比较信号输出故障封锁信号,封锁IGBT,同时显示故障代码。

(3) 故障ER02/ER05 

    故障代码ER02/ER05表示变频器在减速中出现过流或过压故障,主要原因为减速时间过短、负载回馈能量过大未能及时被释放。若电机驱动惯性较大的负载时,当变频器频率(即电机的同步转速)下降时电机的实际转速可能大于同步转速,这时电机处于发电状态,此部分能量将通过变频器的逆变电路返回到直流回路,从而使变频器出现过压或过流保护。现场处理时在不影响生产工艺的情况下可延长变频器的减速时间,若负载惯性较大,又要求在一定时间内停机时,则要加装外部制动电阻和制动单元,康沃G2/P2系列变频器22kW以下的机型均内置制动单元,只需加外部制动电阻即可,电阻选配可根据产品说明中标准选用,对于功率22kW以上的机型则要求外加制动单元和制动电阻。

    ER02/ER05故障一般只在变频器减速停机过程中才会出现,如果变频器在其它运行状态下出现该故障,则可能是变频器内部的开关电源部分,如电压检测电路或电流检测电路异常而引起的。

(4) 故障ER17 

    代码ER17表示电流检测故障,通用变频器电流检测一般采用电流传感器,如图2通过检测变频器两相输出电流来实现变频器运行电流的检测、显示及保护功能,输出电流经电流传感器(如图2示中H1、H2为电流传感器)输出线性电压信号,经放大比较电路输送给CPU处理器,CPU处理器根据不同信号判断变频器是否处于过电流状态,如果输出电流超过保护值,则故障封锁保护电路动作,封锁IGBT脉冲信号,实现保护功能。

    康沃变频器出现ER17故障主要原因为电流传感器故障或电流检测放大比较电路异常,前者可通过更换传感器解决,后者大多为相关电流检测IC电路或IC芯片工作电源异常,可通过更换相关IC或维修相关电源解决。

(5) 故障ER15 

    代码ER15表示逆变模块IPM、IGBT故障,主要原因为输出对地短路、变频器至电机的电缆线过长(超过50m)、逆变模块或其保护电路故障。现场处理时先拆去电机线,测量变频器逆变模块,观察输出是否存在短路,同时检查电机是否对地短路及电机线是否超过允许范围,如上述均正常,则可能为变频器内部IGBT模块驱动或保护电路异常。一般IGBT过流保护是通过检测IGBT导通时的管压降动作的,如图3所示。

    当IGBT正常导通时其饱和压降很低,当IGBT过流时管压降VCE会随着短路电流的增加而增大,增大到一定值时,检测二极管DB将反向导通,此时反向电流信号经IGBT驱动保护电路送给CPU处理器,CPU封锁IGBT输出,以达到保护作用。如果检测二极管DB损坏,则康沃变频器会出现ER15故障,现场处理时可更换检测二极管以排除故障。

(6) 故障ER11 

    康沃变频器出现ER11故障表示变频器过热,可能的原因主要有:风道阻塞、环境温度过高、散热风扇损坏不转及温度检测电路异常。现场处理时先判断变频器是否确实存在温度过高情况,如果温度过高可先按以上原因排除故障;若变频器温度正常情况下出现ER11报警,则故障原因为温度检测电路故障。康沃22kW以下机型采用的七单元逆变模块,内部集成有温度元件,如果模块内此部分电路故障也会出现ER11报警,另一方面当温度检测运算电路异常时也会出现同样故障现象。

4  结束语

    随着变频器应用范围的不断扩大,用户对变频器也越加熟悉,变频器在使用中出现的问题大致相似,本文讲述的康沃变频器在使用中可能出现的故障和一般处理方法,希望对于用户有所帮助,同时供业内人士交流参考。

图1:电压源型交-直-交变频器主电路示意图

图2:电流检测示意图

施耐德变频器故障"ERR 7:ERREUR LS"的解决方法:

1)首先下电,然后换一显示模块或拆下显示模块再安上,再次上电观察;

若显示ERR7,就可以排除显示模块与控制板接触不良的可能性.

另外要检查一下控制板的波特率是否被更改.

   如需硬件复位,操作如下:

1.下电后,将选频开关拨到60HZ方位

2.上额定电压,变频器RDY后,下电.

;3.再将选频开关拨到50HZ方位,即可.

2)另外可以看看风扇是否都在转,可能是风扇不转引起;

3)查查变频器和面板的版本是不是不兼容,是不是同一时期生产的,你可以看看变频器的编号,哪年生产的.

4)查查控制电源是否过压。

5)看看控制卡和电源板之间的通讯有无问题

    控制卡就是操作面板下面那个板。

  先把操作面板的塑料螺丝解下,

  再把下面的那块板子换了。

  这块控制卡是通用的,

  更换板子后,

  上电会报故障CFF,

  按一下ENT键即可解除更换板子后报的这个故障。

  

  也有可能是你的两个板子之间的几根线松了,

  拆下板子后先看线有没有松动。

富士变频器

1 引言

本人在几年前曾接触过大量富士G/P9、G/P11系列低压通用变频器,在故障判断与处理上略有心得:由于当时没有及时形成详细日志,许多心得已被时间冲刷得干净,故有必要及时记下此小札,以飨业界广大从事工控的朋友。

无论是G/P9系列还是G/P11系列的低压通用变频器在发生保护动作时,作为工程师或技术人员,首先要参照该变频器的说明手册进行判断和处理,在问题依然不能解决的情况下,参考此文章会对大家有所帮助。

2  常见故障及判断

(1)OC报警

键盘面板LCD显示:加、减、恒速时过电流。

对于短时间大电流的OC报警,一般情况下是驱动板的电流检测回路出了问题,模块也可能已受到冲击(损坏),有可能复位后继续出现故障,产生的原因基本是以下几种情况:电机电缆过长、电缆选型临界造成的输出漏电流过大或输出电缆接头松动和电缆受损造成的负载电流升高时产生的电弧效应。

小容量(7.5G11以下)变频器的24V风扇电源短路时也会造成OC3报警,此时主板上的24V风扇电源会损坏,主板其它功能正常。若出现“1、OC2”报警且不能复位或一上电就显示“OC3”报警,则可能是主板出了问题;若一按RUN键就显示“OC3”报警,则是驱动板坏了。

(2)OLU报警

键盘面板LCD显示:变频器过负载。

当G/P9系列变频器出现此报警时可通过三种方法解决:首先修改一下“转矩提升”、“加减速时间”和“节能运行”的参数设置;其次用卡表测量变频器的输出是否真正过大;最后用示波器观察主板左上角检测点的输出来判断主板是否已经损坏。

(3)OU1报警

键盘面板LCD显示:加速时过电压。

当通用变频器出现“OU”报警时,首先应考虑电缆是否太长、绝缘是否老化,直流中间环节的电解电容是否损坏,同时针对大惯量负载可以考虑做一下电机的在线自整定。另外在启动时用万用表测量一下中间直流环节电压,若测量仪表显示电压与操作面板LCD显示电压不同,则主板的检测电路有故障,需更换主板。当直流母线电压高压780VDC时,变频器做OU报警;当低于350VDC时,变频器做欠压LU报警。

(4)LU报警

键盘面板LCD显示:欠电压。

如果设备经常:LU欠电压“报警,则可考虑将变频器的参数初始化(HO3设成1后确认),然后提高变频器的载波频率(参数F26)。若E9设备LU欠电压报警且不能复位,则是(电源)驱动板出了问题。

(5)EF报警

键盘面板LCD显示:对地短路故障。

G/P9系列变频器出现此报警时可能是主板或霍尔元件出现了故障。

(6)Er1报警

键盘面板LCD显示:存贮器异常。

关于G/P9系列变频器“ER1不复位“故障的处理:去掉FWD-CD短路片,上电、一直按住RESET键下电,知道LED电源指示灯熄灭再松手;然后再重新上电,看看”ER1不复位“故障是否解除,若通过这种方法也不能解除,则说明内部码已丢失,只能换主板了。

(7)Er7报警

键盘面板LCD显示:自整定不良。

G/P9系列变频器出现此故障报警时,一般是充电电阻损坏(小容量变频器)。另外就是检查内部接触器是否吸合(大容量变频器,30G11以上;且当变频器带载输出时才会报警)、接触器的辅助触点是否接触良好;若内部接触器不吸合可首先检查驱动板上的1A保险管是否损坏。也可能是驱动板出了问题一可检查送给主板的两芯信号是否正常。

(8)Er2报警

键盘面板LCD显示:面板通信异常。

11KW以上的变频器当24V风扇电源短路时会出现此报警(主板问题)。对于E9系列机器,一般是显示面板的DTG元件损坏,该元件损坏时会连带造成主板损坏,表现为更换显示面板上电运行时立即OC报警。而对于G/P9机器一上电就显示“Er2”报警,则是驱动板上的电容失效了。

(9)OH1过热报警

键盘面板LCD显示:散热片过热。

OH1和OH3实质为同一信号,是CPU随机检测的,OH1(检测底板部位)与OH3(检测主板部位)模拟信号串联在一起后再送给CPU,而CPU随机报其中任一故障。出现“OH1”报警时,首先应检查环境温度是否过高,冷却风扇是否工作正常,其次是检查散热片是否堵塞(食品加工和纺织场合会出现此类报警)。若在恒压供水场合且采用模拟量给定时,一般在使用800Ω电位器时容易出现此故障;给定电位器的容量不能过小,不能小于1kΩ;电位器的活动端接错也会出现此报警。若大容量变频器(30G11以上)的220V风扇不转时,肯定会出现过热报警,此时可检查电源板上的保险管FUS2(600V,2A)是否损坏。

当出现“OH3”报警时,一般是驱动板上的小电容因过热失效,失效的结果(症状)是变频器的三相输出不平衡。因此,当变频器出现“OH1”或“OH3”时,可首先上电检查变频器的三相输出是否平衡。

对于OH过热报警,主板或电子热计出现故障的可能性也存在。G/P11系列变频器电子热计为模拟信号,G/P9系列变频器电子热计为开关信号。

(10)1、OH2报警与OH2报警

对G/P9系列机器而言,因为有外部报警定义存在(E功能),当此外部报警定义端子没有短接片或使用中该短路片虚接时,会造成OH2报警;当此时若主板上的CN18插件(检测温度的电热计插头)松动,则会造成“1、OH2”报警且不能复位。检查完成后,需重新上电进行复位。

(11)低频输出振荡故障

变频器在低频输出(5Hz以下)时,电动机输出正/反转方向频繁脉动,一般是变频器的主板出了问题。

(12)某个加速区间振荡故障

当变频器出现在低频三相不平衡(表现电机振荡)或在某个加速区间内振荡时,我们可尝试一下修改变频器的载波频率(降低),可能会解决问题。

(13)运行无输出故障

此故障分为两种情况:一是如果变频器运行后LCD显示器显示输出频率与电压上升,而测量输出无电压,则是驱动板损坏;二是如果变频器运行后LCD显示器显示的输出频率与电压始终保持为零,则是主板出了问题。

(14)运行频率不上升故障

即当变频器上电后,按运行键,运行指示灯亮(键盘操作时),但输出频率一直显示“0.00”不上升,一般是驱动板出了问题,换块新驱动板后即可解决问题。但如果空载运行时变频器能上升到设定的频率,而带载时则停留在1Hz左右,则是因为负载过重,变频器的“瞬间过电流限制功能”起作用,这时通过修改参数解决;如F09→3,H10→0,H12→0,修改这三个参数后一般能够恢复正常。

(15)操作面板无显示故障

G/P9系列出现此故障时有可能是充电电阻或电源驱动板的C19电容损坏,对于大容量G/P9系列的变频器出现此故障时也可能是内部接触不吸合造成。对于G/P11小容量变频器除电源板有问题外,IPM模块上的小电路板也可能出了问题;30G11以上容量的机器,可能是电源板的为主板提供电源的保险管FUS1损坏,造成上电无显示的故障。当主板出现问题后也会造成上电显示故障。

1 引言

本人在几年前曾接触过大量富士G/P9、G/P11系列低压通用变频器,在故障判断与处理上略有心得:由于当时没有及时形成详细日志,许多心得已被时间冲刷得干净,故有必要及时记下此小札,以飨业界广大从事工控的朋友。

无论是G/P9系列还是G/P11系列的低压通用变频器在发生保护动作时,作为工程师或技术人员,首先要参照该变频器的说明手册进行判断和处理,在问题依然不能解决的情况下,参考此文章会对大家有所帮助。

2  常见故障及判断

(1)OC报警

键盘面板LCD显示:加、减、恒速时过电流。

对于短时间大电流的OC报警,一般情况下是驱动板的电流检测回路出了问题,模块也可能已受到冲击(损坏),有可能复位后继续出现故障,产生的原因基本是以下几种情况:电机电缆过长、电缆选型临界造成的输出漏电流过大或输出电缆接头松动和电缆受损造成的负载电流升高时产生的电弧效应。

小容量(7.5G11以下)变频器的24V风扇电源短路时也会造成OC3报警,此时主板上的24V风扇电源会损坏,主板其它功能正常。若出现“1、OC2”报警且不能复位或一上电就显示“OC3”报警,则可能是主板出了问题;若一按RUN键就显示“OC3”报警,则是驱动板坏了。

(2)OLU报警

键盘面板LCD显示:变频器过负载。

当G/P9系列变频器出现此报警时可通过三种方法解决:首先修改一下“转矩提升”、“加减速时间”和“节能运行”的参数设置;其次用卡表测量变频器的输出是否真正过大;最后用示波器观察主板左上角检测点的输出来判断主板是否已经损坏。

(3)OU1报警

键盘面板LCD显示:加速时过电压。

当通用变频器出现“OU”报警时,首先应考虑电缆是否太长、绝缘是否老化,直流中间环节的电解电容是否损坏,同时针对大惯量负载可以考虑做一下电机的在线自整定。另外在启动时用万用表测量一下中间直流环节电压,若测量仪表显示电压与操作面板LCD显示电压不同,则主板的检测电路有故障,需更换主板。当直流母线电压高压780VDC时,变频器做OU报警;当低于350VDC时,变频器做欠压LU报警。

(4)LU报警

键盘面板LCD显示:欠电压。

如果设备经常:LU欠电压“报警,则可考虑将变频器的参数初始化(HO3设成1后确认),然后提高变频器的载波频率(参数F26)。若E9设备LU欠电压报警且不能复位,则是(电源)驱动板出了问题。

(5)EF报警

键盘面板LCD显示:对地短路故障。

G/P9系列变频器出现此报警时可能是主板或霍尔元件出现了故障。

(6)Er1报警

键盘面板LCD显示:存贮器异常。

关于G/P9系列变频器“ER1不复位“故障的处理:去掉FWD-CD短路片,上电、一直按住RESET键下电,知道LED电源指示灯熄灭再松手;然后再重新上电,看看”ER1不复位“故障是否解除,若通过这种方法也不能解除,则说明内部码已丢失,只能换主板了。

(7)Er7报警

键盘面板LCD显示:自整定不良。

G/P9系列变频器出现此故障报警时,一般是充电电阻损坏(小容量变频器)。另外就是检查内部接触器是否吸合(大容量变频器,30G11以上;且当变频器带载输出时才会报警)、接触器的辅助触点是否接触良好;若内部接触器不吸合可首先检查驱动板上的1A保险管是否损坏。也可能是驱动板出了问题一可检查送给主板的两芯信号是否正常。

(8)Er2报警

键盘面板LCD显示:面板通信异常。

11KW以上的变频器当24V风扇电源短路时会出现此报警(主板问题)。对于E9系列机器,一般是显示面板的DTG元件损坏,该元件损坏时会连带造成主板损坏,表现为更换显示面板上电运行时立即OC报警。而对于G/P9机器一上电就显示“Er2”报警,则是驱动板上的电容失效了。

(9)OH1过热报警

键盘面板LCD显示:散热片过热。

OH1和OH3实质为同一信号,是CPU随机检测的,OH1(检测底板部位)与OH3(检测主板部位)模拟信号串联在一起后再送给CPU,而CPU随机报其中任一故障。出现“OH1”报警时,首先应检查环境温度是否过高,冷却风扇是否工作正常,其次是检查散热片是否堵塞(食品加工和纺织场合会出现此类报警)。若在恒压供水场合且采用模拟量给定时,一般在使用800Ω电位器时容易出现此故障;给定电位器的容量不能过小,不能小于1kΩ;电位器的活动端接错也会出现此报警。若大容量变频器(30G11以上)的220V风扇不转时,肯定会出现过热报警,此时可检查电源板上的保险管FUS2(600V,2A)是否损坏。

当出现“OH3”报警时,一般是驱动板上的小电容因过热失效,失效的结果(症状)是变频器的三相输出不平衡。因此,当变频器出现“OH1”或“OH3”时,可首先上电检查变频器的三相输出是否平衡。

对于OH过热报警,主板或电子热计出现故障的可能性也存在。G/P11系列变频器电子热计为模拟信号,G/P9系列变频器电子热计为开关信号。

(10)1、OH2报警与OH2报警

对G/P9系列机器而言,因为有外部报警定义存在(E功能),当此外部报警定义端子没有短接片或使用中该短路片虚接时,会造成OH2报警;当此时若主板上的CN18插件(检测温度的电热计插头)松动,则会造成“1、OH2”报警且不能复位。检查完成后,需重新上电进行复位。

(11)低频输出振荡故障

变频器在低频输出(5Hz以下)时,电动机输出正/反转方向频繁脉动,一般是变频器的主板出了问题。

(12)某个加速区间振荡故障

当变频器出现在低频三相不平衡(表现电机振荡)或在某个加速区间内振荡时,我们可尝试一下修改变频器的载波频率(降低),可能会解决问题。

(13)运行无输出故障

此故障分为两种情况:一是如果变频器运行后LCD显示器显示输出频率与电压上升,而测量输出无电压,则是驱动板损坏;二是如果变频器运行后LCD显示器显示的输出频率与电压始终保持为零,则是主板出了问题。

(14)运行频率不上升故障

即当变频器上电后,按运行键,运行指示灯亮(键盘操作时),但输出频率一直显示“0.00”不上升,一般是驱动板出了问题,换块新驱动板后即可解决问题。但如果空载运行时变频器能上升到设定的频率,而带载时则停留在1Hz左右,则是因为负载过重,变频器的“瞬间过电流限制功能”起作用,这时通过修改参数解决;如F09→3,H10→0,H12→0,修改这三个参数后一般能够恢复正常。

(15)操作面板无显示故障

G/P9系列出现此故障时有可能是充电电阻或电源驱动板的C19电容损坏,对于大容量G/P9系列的变频器出现此故障时也可能是内部接触不吸合造成。对于G/P11小容量变频器除电源板有问题外,IPM模块上的小电路板也可能出了问题;30G11以上容量的机器,可能是电源板的为主板提供电源的保险管FUS1损坏,造成上电无显示的故障。当主板出现问题后也会造成上电显示故障。

3  应用中的一些参数设置

(1)当现场应用中需要一台三相220V输出(50Hz)的变频器,而手头只有一台同功率的380V变频器时,我们可以根据V/F变频器的基本原理将参数F04(基本频率1)修改为90Hz,参数F03(最高频率1)修改为50Hz,参数F05(额定电压)保持出厂设定,这时就可以满足现场需要。在应用此设置时,注意要将自动节能运行(参数H10)关闭,且转矩提升(参数F09)设置成0。

(2)当G/P9系列变频器出现在某个频率区段内电机振动问题(轻微三相不平衡)时,可调整转矩提升曲线的参数设置,这时能够减轻振动或改变振动的频段;再通过调整载波频率,降低为2kHz,基本可以解决问题。

(3)低压通用变频器一般都具有“瞬时过电流限制”功能,即当负载过重,变频器的电流上升过快时,变频器自动降低(或限制)频率输出,而这种情况在某些使用场合是不允许发生的自动降频运行的情况,只能将这种功能关掉;为了保护电动机和变频器,通过参数设置尽量减小突变电流,如将F09先设成0.0(也可先设成2.0再比较两种设定电流的大小),节能运行关掉(H10设成0),为例防止恒转矩负载低电压启动时造成过电流,我们还要选择合适的加/减速度曲线,如将H07设成0。

(4)当变频器出现“OL1”报警时,直接解决为调整过载的动作值(不建议使用),为了从根本上解决问题,又能起到过载的保护作用,我们可调整参数F09设为2(风机的合适点为0.1,水泵的合适点为0.8;一般设为2时电流要比设为0.0时要小),另外将节能运行关掉(参数H10设为0)。

(5)G/P11系列变频器在拖动大惯量负载时,很容易报0U2恒速过电压故障,适当修改减速时间参数F08,制动转矩参数F41设成0,节能运行参数H10设成0。

(6)在希望设备以点动频率输出时,注意要先将JOG-CM置为ON,且在JOG-CM变为OFF之前,置FWD-CM或REV-CM为ON,设备才能按C20参数设定的点动频率运行。其特点是:在设备点动运行(无论匀速、升速或降速)期间,即使JOG-CM信号为OFF,变频器点动运行按给定的Run、Stop信号为准。

4  故障判断实例

一台FRN11PS-4CX设备故障为上电立即(有时为几秒)显示OC3报警,并且复位动作不正常(有时能复位有时不能复位)。将一台故障情况为带载运行时显示OH1、OH3的CPU板替换上之后,该设备故障情况为上电立即显示OC1报警-可以复位,几秒后又显示OL2报警-不能复位;而将此设备的主板换到运行时显示OH1、OH3的机体(7.5P11)上时,能正常运行也不报警。说明该设备的主板末坏,是电源驱动板坏了;而显示OH1、OH3报警的7.5P11的机器为主板有问题,驱动板没问题。

5  驱动板与主板的替换问题

(1)7.5G11~18.5G11功率等级系列,P型变频器与小一级容量的G型变频器的容量的驱动板可以互换;

(2)在更换不同功率的E型变频器的主板时,先进入F00功能代码之后,同时按住Stop、Run和Pro键进入U参数(THR和CM端子必须短接且FWD和CM断开),选择与该变频器主体同容量的主控程序参数设置;其次F01~F06参数也应按要求修改或确认,步骤同F00;当修改完U参数后,一定要记得重新修复出厂设置以保存修改完的U参数。

(3)不同容量的G/P型主板在某一容量范围内(30KW以下是同一规格尺寸,30KW以上是同一规格尺寸)可以互换,其修改主控程序内的C参数,步骤,步骤与E型机器修改大同小异。

6  一些外部硬件配置时需注意的问题

(1)直流电抗器和交流进线电抗器

直流电抗器并不能完全替代交流进线电抗器。直流电抗器的主要作用是提高功率因素和对中间直流环节的电容提供保护;但在三相进线电压严重不平衡或该电网内有可控硅负载的场合,进线电抗器的优势就明显体现出来;它主要保护电源对整流桥和充电电阻的冲击。对于小功率(7.5KW以下),单独用进线电抗器要比用直流电抗器的效果好得多。

(2)输出电抗器和OFL滤波器

在实际应用中,许多客户在选用变频器时都配置了一台输出电抗器,主要是抑制输出侧的漏电流,尤其在输出电缆较长的场合,如电潜泵的应用。OFL滤波器不是一台简单的输出电抗器,它内部有LC回路,不但可以一直输出侧的漏电流,而且可以稳定电动机的端电压和抑制输出侧对外界的干扰。由于OFL滤波器价格昂贵、需从国外订货,一般在输出配线很长又不允许对外界干扰的使用场合可以建议用户采用输出电抗器和ACL电抗器配合使用(ACL电抗器应安装在变频器的输出侧)。

7  一拖多问题

在此提到一拖多是指一台变频器同时驱动多台电动机,如纺织场合的绕丝辊。多台电动机同时被一台变频器拖动,需要满足一定的条件;如电动机的信号必须相同,每台电动机拖动的相同负载在同一时间内的工艺要求相同。对于变频器而言,根据电流原则需适当增加变频器的选型(容量增加及P型改G型)、适当延长变频器的加减速时间,以防瞬时电流限制功能动作或OC报警;在外围硬件配置上,应增加一台输出电抗器来降低运行时的漏电流。

8  结束语

本文是作者对富士变频器应用中所出现的一些故障现象及其对故障处理经验的总结,同时也如何正确使用变频器作了论述,可供同行们参考。

 普传变频器

一、 电后键盘无显示:

1. 检查输入电源是否正常,若正常,可测量直流母线P、N端电压是否正常:若没电压,可断电检查充电电阻是否损坏断路。

2. 经查P、N端电压正常,可更换键盘及键盘线,如果仍无显示,则需断电后检查主控板与电源板连接的26P排线是否有松脱现象或损坏断路。

3. .若上电后开关电源工作正常,继电器有吸合声音,风扇运转正常,仍无显示,则可判定键盘的晶振或谐振电容坏,此时可更换键盘或修理键盘。

4. 如果上电后其它一切正常,但仍无显示,开关电源可能未工作,此时需停电后拔下P、N端电源,检查IC3845的静态是否正常(凭经验进行检查)。如果IC3845静态正常,此时在P、N加直流电压后18V/1W稳压二极管两端约8V左右的电压,但开关电源并未工作,断电检查开关变压器副边的整流二极管是否有击穿短路。

5. 上电后18V/1W稳压二极管有电压,仍无显示,可除去外围一些插线,包括继电器线插头、风扇线插头,查风扇、继电器是否有短路现象。

6. P、N端上电后,18V/1W稳压二极管两端电压为8V左右,用示波器检查IC3845的输入端④脚是否有锯齿波,输出端⑥脚是否有输出。

7. 检查开关电源的输出端+5V、±15V、+24V及各路驱动电源对地以及极间是否有短路。

二、键盘显示正常,但无法操作:

1. 若键盘显示正常,但各功能键均无法操作,此时应检查所用的键盘与主控板是否匹配(是否含有IC75179),对于带有内外键盘操作的机器,应检查一下你所设置的拨码开关位置是否正确。

2. 如果显示正常,只是一部分按键无法操作,可检查按键微动开关是否不良。

三、电位器不能 调速:

1. 首先检查控制方式是否正确。

2. 检查给定信号选择和模拟输入方式参数设置是否有效。

3. 主控板拨码开关设置是否正确。

4. 以上均正确,则可能为电位器不良,应检查阻值是否正常。

四、过流保护(OC):

1. 当变频器键盘上显示“FO OC”时“OC”闪烁,此时可按“∧”键进入故障查询状态,可查到故障时运行频率、输出电流、运行状态等,可根据运行状态及输出电流的大小,判定其“OC”保护是负载过重保护还是Vce保护(输出有短路现象、驱动电路故障及干扰等)。

2. 若查询时确定由于负载较重造成加速上升时电流过大,此时适当调整加速时间及合适的V/F特性曲线。

3. 如果没接电机,空运行变频器跳“OC”保护,应断电检查IGBT是否损坏,检查IGBT的续流二极管和GE间的结电容是否正常。若正常,则需检查驱动电路:①检查驱动线插接位置是否正确,是否有偏移,是否虚插。②检查是否是因HALL 及线不良导致“OC”。③检查驱动电路放大元件(如IC33153 等)或光耦是否有短路现象。④检查驱动电阻是否有断路、短路及电阻变值现象。

4. 若在运行过程中跳“OC”,则应检查电机是否堵转(机械卡死),造成负载电流突变引起过流。

5. 在减速过程中跳“OC”,则需根据负载的类型及轻重,相应调整减速时间及减速模式等。

五、过载保护(OL):

1. 当变频器键盘上显示“FO OL”时“OL”闪烁,此时可按“∧”键进入故障查询状态,可查到故障时运行频率、输出电流、运行状态等,可根据运行状态及输出电流的大小,若输出电流过大,则可能负载过重引起,此时应调整加、减速时间及V/F曲线、转矩提升等。若仍过载,则应考虑减轻负载或更换更大容量的变频器。

2. 若查询故障时输出电流并不大,此时应检查电子热过载继电器参数是否适当。

3. 检查HALL及线是否有不良。

六、过热保护(OH):

1. 检查温度开关线插头是否插好,用万用表检测温度开关线是否断开,若断开则可断定温度开关线断路或温度开关损坏。

2. 风扇不良导致过热保护。

3. 环境温度过高,散热效果较差,变频器内部温度较高导致过热保护。

4. 对于带有整流桥的七单元IGBT的变频器,其温度检测是利用IGBT内部的热敏电阻的阻值变化进行温度检测的,若出现“OH”过热保护,有如下原因:①比较器坏,输出高电平所制。②比较器比较电阻变值,比较电压较低。③IGBT 内部的热敏电阻阻值异常。

七、过压保护(OU):

1. 变频器在减速过程中出现过压保护,是由于负载惯性较大所致,此时应延长减速时间,若仍无效,可加装制动单元和制动电阻来消耗能量。

2. 因更换电源板或主控板所引起的过压保护,需调整VpN参数电阻。

3. 输入电源电压高于变频器额定电压太多,也能出现过压。

八、欠压保护(LU):

1. 首先检查输入电源电压是否正常,接线是否良好,是否缺相。

2. “04”值参数电阻是否适当。

3. 因更换电源板或主控板所引起的欠压保护,需调整VpN参数电阻。

4. 电压检测回路,运放等器件不良也能导致欠压。

九、继电器不吸合:

1. 首先应检查输入电源是否异常(如缺相等)。

2. 检查电源板与电容板之间的连线是否正确,是否有松动现象。

3. 检查主控板与电源板之间的26P排线是否有接触不良或断线现象,导致REC控制信号无效,继电器不吸合。

4. 继电器吸合回路元器件坏也导致继电器不吸合。

5. 继电器内部坏(如线圈断线等)。

十、有频率显示,但无电压输出:

1. 变频器运行后,有运行频率,但在U、V、W之间无电压输出,此时需检查载波频率参数是否有丢失。

2. 若载波频率参数正常,可运行变频器,用示波器检查其驱动波形是否正常。

3. 若驱动波形不正常,则需检查主控板CPU发出的SPWM波形是否正常,若异常,则CPU故障;若主控板的SPWM波形正常,则需断电更换26P排线再试,若驱动板驱动波形仍不正常,则驱动电路部分有故障,需修理或更换。

 变频器故障分析及维修实例
维修变频器应具备的知识
工作人员应能根据变频
器使用说明书了解变频器的
结构、原理,并熟练操作变
频器。
1。变频器的结构及原理
应深入了解变频器的基
本原理和主回路结构,熟悉
各部件的作用。变频器主电路由整流电路、中间直
流电路和逆变器3部分组成,如图所示。
f1]整流电路:将电源的-~H交流全
波整流成直流 整流后的直流电压一般
为540V左右:
(21滤波电容器:除滤除整流后的电
压纹波外,还给感性负载的电动机提供
必要的无功功率(又称储能电容器,其值
较大1:
(3)充电电阻及电源接触器:当变频
器通电瞬间,滤波电容器的充电电流很
大 可能损坏整流模块,电阻R起到限
流的作用,将电容器的充电电流限制到
允许范围以内(故又称充电电阻):电源接
触器的功能是:当滤波电容充电到一定
值时,令接触器接通,将充电电阻旁路掉:
(4)电源指示灯:指示变频器是否上
电,在变频器切断电源后,显示滤波电
容器放电是否完毕
2.判断故障位置
测量模块时,用指针
式万用表1 Ok档分别测量变
频器的输入/输出端对直流
母排P+/N一的阻值,正常时
三相分别平衡:若用数字万
用表的二极管档测量变频
器的输入/输出端对直流母
排P+/N一,正常时三相分别
呈二极管特性。若三相其
中任意~相对母排阻值趋于零或二极管
反向导通.则说明此相桥臂的IGBT被击
穿。具体测量方法参见表。
二变频器维修实例分析
1 安川变频器报警显示
“UV DC Bus Undervolt”
a.故障现象1
给安川616G5 37kW变频器送电,
未听到接触器吸合声,风扇不转,充
电指示灯亮,报警显示“UV DC Bus
Undervolt”,故障不能复位。
故障分析及处理:先检测电源,排除
电源电压低。断电,待电容器放电完毕,
用万用表测变频器的输入/输出与P+/N一
呈二极管特性,排除整流、逆变模块故障。
先假定接触器完好,充电指示灯亮则说明
充电电阻正常,风扇为何都不转呢?找到
风扇的电源引线.发现其所在变频器右
下角的小印刷板上的保险丝烧坏,观察
印刷板线路.发现它是一个变压器的输
入/输出板。变压器的输入端R、S的电
压经选档380V、400V、440V、460V跳
线(选400V)过保险丝接变压器的一次绕
组,二次绕组输出带三路220V负载,两
路给两个风扇.一路经控制板给接触器线
圈 表测发现一个风扇烧坏。问题基本
清楚了,由于风扇短路,电流剧增,引
起变压器严重过负荷烧坏。变压器烧坏,
接触器线圈及风扇无电源供给,故不能
变频器出现故障时,能根据变频器 变频器的主回路结构图
9 · 2OO8 鞠 勰鏖嬲黼
维普资讯 http://www.cqvip.com
变频器故障分析及维修实例 技术纵横
正常运行,接触器不吸,就不能旁路掉
充电电阻,检测到的直流电压就会低于
设定直流电压,故报警显示“UV DC Bus
Unde rvolt”。目测驱动板无明
显故障(假定其完好,若有问
题变频器会显示相应故障),更
换控制保险丝、风扇、变压器,
断开直流主回路保险丝接一个
白炽灯泡做假负载.以免短路
时烧坏模块。送电,面板故障
消除,设定15 Hz,按启动按钮,
测三相输出电压基本平衡,升
频至50 Hz,三相输出正常 拆
除假负载,恢复直流熔断器(俗
称快熔),空载运行半小时,无
异常声音及气味:最后带载试机
工作恢复正常。
b.故障现象2
分正常,主控板无明显症状,更换快熔、
lGBT,按假负载、空载、带载的顺序.
逐步加电试机,变频器工作正常。
翔断故障位置测量方法举锄表
变频器 3..~JII 616G5 22KW变频器
面板无显示
给安川616G5 22 kW变频器送电,
接触器不吸,风扇运转,充电指示灯亮,
报警显示“UV DC Bus Undervolt”。
故障分析及处理:风扇运转说明辅
助电源变压器正常,测直流电压正常、
充电指示灯亮,说明整流及充电电阻正
常。主要查清接触器为何不吸。打开变
频器后.发现驱动板上光电耦PC923烧
坏.驱动板故障的可能性最大。从同型
号的变频器上拆了一块换上,按假负载、
空载、带载的顺序,逐步加电试机,变
频器工作正常。
2.富士G11 37 kW变频器,报警
显示DC熔断器断路
故障现象:送电,变频器有接触器
吸合声音,风扇运转,充电指示灯亮,
报警显示DC熔断器断路。
故障分析及处理:快熔损坏,-7t~.
是由于输出模块IGBT被击穿,产生大的
短路直流电流引起的,此电流甚至可能
烧坏整流模块。表测变频器的输入/输出
与P+/N一,发现中相IGBT烧坏,整流部
故障现象:送电. 安川61 6G5
22kW变频器无接触器吸合声.充电指
示灯不亮,风扇运转,面板无显示。
故障分析及处理:如果只是操作控
制板坏,那么接触器应吸合、充电指示
灯应亮;如果只是驱动板坏,那么充电
指示灯应亮。从现象分析来看至少是充
电电阻坏了,因为充电指示灯及驱动板
的电源均取自充电电阻的后面,充电电
阻断开,指示灯不会亮,驱动板也因无
电源.不能工作,面板就不会显示。断
开充电电阻引线测量,果然已经损坏。
那么.为什么充电电阻会损坏?充电电
阻只有在变频启动的瞬间起作用,接触
器吸合后.就会被接触器主触点旁路掉,
充电电阻损坏,很可能是因长期带电发
热而被烧坏,也不排除其质量问题。为
什么接触器不吸?风扇运转,说明辅助
电源的供给正常:单独加电给接触器,
接触器动作正常,接触器本身及电源均
正常.则说明可能是控制板坏了,先更
换充电电阻,带假负载试机,结果风扇
运转,充电指示灯亮,接触器不吸,报
警显示“UV DC Bus Unde rvolt”,这说
明驱动板确实坏了。更换驱动板,按假
负载、空载、带载的顺序,逐步加电试机,
变频器工作正常。
4.变频器报警显示OH1
故障现象:富士G1 1 37kW变频器送
电,接触器吸合、风扇运转、面板状态
正常,按启动按钮,变频器显示OH1报警。
故障分析及处理:查说明书散热片
温度过热,手摸变频器壳体及散热片部
位温度不高.查维护信息显示变频器内
部温度及散热片温度均在正常范围内.
只能说明检测温度的地方有误。打开变
频器,找到检测温度点:一个来自散热片,
一个来自逆变模块。断开或短封两点的
状态,故障均不消失。这说明检测部件
失真,拆同型号的板子试,结果故障依然。
最后咨询富士变频维修人员,得知:原
来冷却变频器控制板的风扇是带有检测
线的三线风扇,它在风扇转速降低或烧
坏时,会发出报警信号,保护变频不致
发热而烧模块。当时,因生产需要,在
确定环境温度不高的情况下,剪断风扇
“黄黑”两根检测线,在变频侧短封做应
急处理,变频器运行正常。
三维修中应注意的问题
(1)要特别注意安全,检查或更换元
件时.一定要确保变频器内电容放电完
毕。充电指示灯不亮了,再进行:
(2)在更换模块时,一定要在模块底
面均匀涂上散热硅胶,这样模块的热量
会很好传给散热片,不致因温度太高而
烧毁:
(3)在安装的过程中,切记插好驱动
线:l G BT模块的触发端在触发线拨掉后
有可能留有小量电荷,此时模块处于半
导通状态.一通电就因短路而烧坏;
(4)变频器内的所有螺丝一定要紧
固,有些螺丝还起着电气连通的作用。

 

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多