茶香飘万里 / 小学数学 / 小学数学基础知识和基本概念

0 0

   

小学数学基础知识和基本概念

2010-10-06  茶香飘万里

  自然数

  用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。

  整数

  自然数都是整数,整数不都是自然数。

  小数

  小数是特殊形式的分数。但是不能说小数就是分数。

  混小数(带小数)

  小数的整数部分不为零的小数叫混小数,也叫带小数。

  纯小数

  小数的整数部分为零的小数,叫做纯小数。

  循环小数

  小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333……,1.2470470470……都是循环小数。

  纯循环小数

  循环节从十分位就开始的循环小数,叫做纯循环小数。例如: ,   。混循环小数

  与纯循环小数有唯一的区别:不是从十分位开始循环的循环小数,叫混循环小数。例如,   ,   。

  有限小数

  小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。

  无限小数

  小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。

  分数

  表示把一个“单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。(分成0份在此不讨论)

  真分数

  分子比分母小的分数叫真分数。

  假分数

  分子比分母大,或者分子等于分母的分数叫做假分数。(分母、分子为零在此不讨论)

  带分数

  一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。

  关于   (n表示自然数)是否是分数

  是分数,但不能用分数的意义去解释它,它既不属于真分数,也不属于假分数,而是一个特殊分数,叫零分数。

  数与数字的区别

  数字(也就是数码):是用来记数的符号,通常用国际通用的阿拉伯数字 0~9这十个数字。其他还有中国小写数字,大写数字,罗马数字等等。

  数是由数字和数位组成。

  0的意义

  0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。

  0是一个数。

  0是一个偶数。

  0是任何自然数(0除外)的倍数。

  0有占位的作用。

  0不能作除数。

  0是中性数。
 
十进制

  十进制计数法是世界各国常用的一种记数方法。特点是相邻两个单位之间的进率都是十。10个较低的单位等于1个相邻的较高单位。常说“满十进一”,这种以“十”为基数的进位制,叫做十进制。

  加法

  把两个数合并成一个数的运算,叫做加法,其中两个数都叫“加数”,结果叫“和”。

  减法

  已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法。减法是加法的逆运算。其中“和”叫“被减数”,已知的加数叫“减数”,求出的另一个加数叫“差”。

  乘法

  求n个相同加数的和的简便运算,叫做乘法。其中相同的这个数及n个这样的数都叫“因数”,结果叫“积”。

  除法

  已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。除法是乘法的逆运算。其中“积”叫做“被除数”,已知的一个因数叫做“除数”,求出来的另一个因数叫做“商”。

  加、减法的运算定律

  加法交换律:两个数相加,交换两个加数的位置,和不变,叫做加法交换律。

  加法结合律:三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。这叫做加法结合律。

  在减法中,被减数、减数同时加上或者减去一个数,差不变。

  在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。

  在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。

  乘、除法运算定律

  乘法的交换律:两个数相乘,交换两个因数的位置,积不变。这叫做乘法的交换律。

  乘法的结合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。 乘法分配律:两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。这叫做乘法分配律。

  乘法的其他运算定律

  一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,其积不变。

  除法的运算定律---商不变性质

  两个数相除,被除数和除数同时扩大或者缩小相同的一个数(0除外),商的大小不变。

  乘法的意义

  一道乘法算式一般有下面几个意义:

  一、求几个相同加数的和是多少?例如:27×13,表示求13个27的和是多少?也可以表示求27的13倍是多少?

  二、求一个数的若干倍是多少?例如:27×0.3或者   的意义:求27的十分之三是多少?

  除法的意义

  一道除法算式,一般有下面几个意义:

  1、一个数里有几个除数。简称“包含除法”。 例如,24÷3表示24里面包含有几个3。

  2、一个数是另一个数的多少倍。例如:24÷3,表示24是3的多少倍?

  3、把一个数平均分成若干份,每份是多少?简称“等分除法”。

  例如:24÷3,表示把24平均分成3份,每份是多少?

  4、已知一个数的几分之几是多少,求这个数。

  例如:   ,表示:已知一个数的三分之一是24,求这个数。

  整除与除尽

  整除:

  甲数除以乙数(甲、乙为自然数),商是整数,余数为零。就说甲数能被乙数整除。

  除尽:甲数除以乙数(乙数不为零),商是有限数。就说甲数能被乙数除尽。

  整除可以说是除尽,但除尽就不能说一定叫整除。

  例如:1÷5=0.2,叫除尽,但不叫整除。因为商是小数。

  又如:10÷3=3……1,既不叫整除,(因为余数不为零)也不叫除尽。

  约数和倍数

  当甲数能被乙数整除时,就说甲数是乙数的倍数,乙数是甲数的约数。这两个概念都是相对而存在。一个自然数,不存在是否倍数与约数。例如:“3是约数”,就是一个错误说法。只能是对3、6、9、……等数而言,是其中某个数的约数。

  奇数与偶数

  凡是能被2整除的数叫偶数,反之,不能被2整除的数叫奇数。

  质数(素数)与合数

  一个数的约数只有1和它本身的数叫做质数,也叫素数。反之,一个数的约数除了1和它本身以外,还有其他的约数,这个数就叫合数。

  1是否质数

  由于1的约数只有1个,所以1既不是质数,也不是合数。

  公约数

  几个数公有的约数,叫做公约数。

  它的个数是有限的,既有最大的,也有最小的。

  互质数

  两个数的公约数只有1,而没有其他公约数的,这两个数就叫互质数。

  质数与互质数

  这两个概念没有什么联系。两个质数,不能肯定就是互质数。只有两个不相同的质数,才能肯定是互质数。另外,两个合数既可能是互质数,也可能不是互质数,但不能说两个合数一定不是互质数。

  质因数

  把一个合数分解成几个质数相乘的形式,这样的质数叫做质因数。

  分解质因数

  把一个合数分解成几个质数相同的形式,就叫做分解质因数。

  公倍数

  几个数公有的倍数,叫做公倍数。它的个数是无限的,只有最小的,没有最大的。

  最大公约数

  几个数公有的约数中,最大的一个就叫做这几个数的最大公约数。

  最小公倍数

  几个数公有的无限个倍数中,最小的一个,就叫做这几个数的最小公倍数。

  能被2整除的判断方法

  一个数能否被2整除,只要看这个数的末尾是否有0、2、4、6、8这五个数的其中一个即可。

  能被5整除的判断方法

  一个数能否被5整除,只要看这个数的末尾是否有0、5这两个数的其中一个即可。

  能被3整除的判断方法

  一个数能否被3整除,只要看这个数的各个数位上的数字和能否被3整除。

  分数单位

  分子为1,分母不为零的真分数,就叫这个分数的分数单位。例如:   的分数单位是   ,它有7个这样的分数单位。又如   的分数单位是   ,它有13个这样的分数单位(将带分数化成假分数)。

  分数化有限小数的判断方法

  一个分数能否化成有限小数,主要看分母(这里的分数一定是最简分数)是不是只有质因数“2或5”。掺杂任何其他质因数,都不能化成有限小数,反之,就一定能化成有限小数。例如:   、   、   等都能化成有限小数。   、   、   都不能化成有限小数。
 
分数没有基本单位

  不同的分数,有不同的分数单位。没有一个共同的标准量,就没有基本单位。

  分数的基本性质

  一个分数的分子、分母同时乘上或除以相同的数(零除外),分数的大小不变,这叫分数的基本性质。

  分数的通分、约分

  通分:把几个单位不同的分数,化成相同单位,且大小不变的分数,叫做通分。

  约分:把一个分数化成同它相等的,分子、分母较小的分数,叫做约分。

  百分数

  表示一个数是另一个数的百分之几的数,叫做百分数。百分数又叫百分率或百分比。百分数是特殊分数。特征是分母为100,采用符号“%”(叫做百分号)来表示。分子可以是整数,也可以是小数。

  百分率

  两个相同量的比的比值,用百分数和的形式表示时,这个比值叫做这两个量的百分率,也叫百分比。通常的“××率”就是百分数。如“出勤率”等。

  准确数与近似数(近似值)

  与实际情况完全符合的数,叫做准确数。

  与实际情况接近而有一定误差的数,叫做近似数(或叫近似值)。

  名数与不名数

  量数与计量单位名称合起来叫做名数。例如:7米、18千克、9时25分等都叫名数。

  没有带单位名称的数,叫做不名数。如2、4、6、8等,都叫不名数。

  单名数与复名数

  只含有一个计量单位名称的名数叫做单名数。例如7米、18千克等都叫做单名数。

  含有两个或者两个以上的同类计量单位名称的名数,叫做复名数。例如:2米3分米5厘米,8小时33分,8吨8千克等都叫复名数。

  高级单位与低级单位

  计量单位较大的叫做高级单位,计量单位较小的叫做低级单位。高、低级单位是相对的,没有单个的高、低级单位的名数。

  公历年的平年、闰年

  平年:把公历年份除以4(这里不是整百的公历年份)有余数时,就把这一年叫做平年,计365天。其中二月份有28天。

  闰年:把公历年份除以4(这里不是整百的公历年份)余数为零时,就把这一年叫做闰年,计366天。其中二月份有29天。如果年份是整百的,则除以400,再看余数。

  时刻与时间

  时刻表示一天内某一个特指的时候,例如上午8时30分开会,这里的“8时30分”这是时刻。时间表示两个是期或两个时刻的间隔。例如,做作业用去30分钟,这里的“30分钟”就是时间。

  比和比值

  比:两个数相除,叫做两个数的比。一般地当数a除以b(b≠0)就叫做a与b的比,记作a:b。也可以用分数形式表示为   。

  比值:比的前项除以后项所得的商,叫做比值。

  比和比值有本质的不同。如   既可看作是比,又可看作是比值。如果化成   ,则只能表示为比值。

  比的化简

  把一个比化为最好简整数比,叫做比的化简。一般情况下,化简以后的比,前后两项为互质数。

  比例

  表示两个比相等的式子叫做比例。

  正比例

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。用字母表示:   (一定)

  反比例

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。用字母表示:   (一定)

  直线:没有端点,可以向两端无限延长。

  射线:只有一个端点。可以向一端无限延长。

  线段:有两个端点。射线和线段都是直线的一部分。

  两点之间,线段最短。

  垂线、垂足

  两条直线相交,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,其交点叫垂足。从直线外一点到直线所画的线段中,垂线最短。

  角:

  锐角(小于900的角)、直角(等于900的角)、钝角(大于900而小于1800的角)、平角(等于1800的角)、周角(等于3600的角)

  平行线

  在同一平面内的两条不相交的直线,叫做平行线。

  面积和地积

  面积是用来表示一个物体的表面或者平面的大小。

  地积就是土地的面积。

  体积和容积(容量)

  体积:用来表示物体所占空间的大小,叫做体积。

  容积:一个容器所能容纳物体的体积,叫做容积或容量。
 
小学数学必背定义、定理公式:

  三角形的面积=底×高÷2。 公式 S= a×h÷2

  正方形的面积=边长×边长 公式 S= a×a

  长方形的面积=长×宽 公式 S= a×b

  平行四边形的面积=底×高 公式 S= a×h

  梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

  内角和:三角形的内角和=180度。

  长方体的体积=长×宽×高公式:V=abh

  长方体(或正方体)的体积=底面积×高公式:V=abh

  正方体的体积=棱长×棱长×棱长公式:V=aaa

  圆的周长=直径×π 公式:L=πd=2πr

  圆的面积=半径×半径×π 公式:S=πr2

  圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

  圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

  圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

  圆锥的体积=1/3底面×积高。公式:V=1/3Sh

  分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  分数的乘法则:用分子的积做分子,用分母的积做分母。

  分数的除法则:除以一个数等于乘以这个数的倒数。
 读懂理解会应用以下定义定理性质公式(关于算术方面)

  1、加法交换律:两数相加交换加数的位置,和不变。

  2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

  3、乘法交换律:两数相乘,交换因数的位置,积不变。

  4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

  5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

  6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。

  简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

  7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

  等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  8、什么叫方程式?答:含有未知数的等式叫方程式。

  9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

  学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

  10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。

  11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

  13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

  14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

  15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

  16、真分数:分子比分母小的分数叫做真分数。

  17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

  18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

  19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

  20、一个数除以分数,等于这个数乘以分数的倒数。

  21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
 读懂理解会应用以下定义定理性质公式(数量关系计算公式方面)

  1、单价×数量=总价

  2、单产量×数量=总产量

  3、速度×时间=路程

  4、工效×时间=工作总量

  5、加数+加数=和一个加数=和+另一个加数

  被减数-减数=差 减数=被减数-差被减数=减数+差

  因数×因数=积一个因数=积÷另一个因数

  被除数÷除数=商 除数=被除数÷商被除数=商×除数

  有余数的除法:被除数=商×除数+余数

  一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

  6、 1公里=1千米 1千米=1000米

  1米=10分米 1分米=10厘米 1厘米=10毫米

  1平方米=100平方分米 1平方分米=100平方厘米

  1平方厘米=100平方毫米

  1立方米=1000立方分米 1立方分米=1000立方厘米

  1立方厘米=1000立方毫米

  1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

  1公顷=10000平方米。 1亩=666.666平方米。

  1升=1立方分米=1000毫升 1毫升=1立方厘米

  7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

  比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

  8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

  9、比例的基本性质:在比例里,两外项之积等于两内项之积。

  10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

  11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

  12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y

  百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

  13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

  把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

  把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

  15、要学会把小数化成分数和把分数化成小数的化发。

  16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)

  17、互质数:公约数只有1的两个数,叫做互质数。

  18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

  19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

  20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)

  21、最简分数:分子、分母是互质数的分数,叫做最简分数。

  分数计算到最后,得数必须化成最简分数。

  个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

  22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

  23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

  24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

  28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

  29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

  30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

  31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414

  32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

  如3. 141592654

  33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……

  34、什么叫代数? 代数就是用字母代替数。

  35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。如发现有害或侵权内容,请点击这里 或 拨打24小时举报电话:4000070609 与我们联系。

    猜你喜欢

    0条评论

    发表

    请遵守用户 评论公约

    类似文章
    喜欢该文的人也喜欢 更多