分享

Message Factory and Message Interface Design Pattern

 royy 2010-11-05

Message Factory and Message Interface Design Pattern

Intent

Distributed systems involve several communicating processors. The interfaces between these processors are often governed by interface documents and standard header files. The main objective of the Message Interface Design Pattern is to decouple the software from its external interfaces. This pattern also allows for a smoother role out of interface by maintaining backward compatibility.

Also Known As

  • Interface Agent
  • Message Handler

Motivation

Software developers of distributed system resist changes in interfaces between modules. This is mainly due to:

  • Making interface changes requires scheduling releases with the updates at the same time. This can be a logistic nightmare when teams working on different modules are not at the same location.
  • Interface handling code and main logic of the module often get intertwined. Thus making interface changes difficult.
  • Many times processors have different byte ordering and byte alignment conventions, this complicates interface design. (See the article on byte alignment and ordering)

This pattern addresses these issues as mentioned below:. 

  • The interfaces are defined to support backward compatibility, this reduces the effort involved in scheduling two independent software releases at the same time. 
  • The code for interface handling is decoupled from regular code, thus simplifying interface upgrades.
  • Interfaces are packed to network conventions when sending the message. The messages are unpacked to native format when they are received.

Applicability

This pattern can be used in the following cases:

  • Modeling message interfaces with another processor within the system when the messages are packed at byte level.
  • Modeling message interfaces with external modules (many times these messages are packed at bit level)

Structure

  • Different messages supported by an interface are implemented as a class hierarchy. Each message class overrides the Pack and Unpack methods to define message specific packing and unpacking.
  • Processor class contains a Message Factory class. Message Factory creates objects when the message type and version are specified.
  • A ProcessorManager class might be defined when multiple processors with same message interface need to be supported.

Participants

The key actors of this design pattern:

  • Processor: Base class that implements all the common functionality for all processors. Typically, classes representing processor interfaces would inherit from this class.  
  • MessageFactory: Message Factory creates a message object when the message type is supplied as a parameter.
  • Message: Base class interfaces that are common to all messages.

Collaboration

The following diagram shows the relationship and collaboration between various classes involved in the Message Factory and Message Interface Pattern. 

Message factory and message interface design pattern uml class diagram

Consequences

Use of this pattern has the following benefits:

  • Message interface handling and rest of the logic are completely decoupled
  • Introducing interface changes is easy as modules with new interfaces can also work with modules with older interface.
  • Byte alignment and ordering considerations do not limit message interface design. There is less chance of bugs in this area. 

Implementation

The following scenarios are supported:

Setting Up Message Factory

  1. All message classes define a static method that creates an instance of the message by calling new.
  2. A function pointer to the above function, message type and version are passed to the Message Factory.
  3. Message Factory stores the mapping between message type, version and static message creation method.

Receiving a Message

  1. Application asks a Processor class to receive all messages from the OS queue.
  2. Processor obtains the message type and version from the message
  3. Message Factory is invoked with the message type and version
  4. Message Factory invokes the previously registered static method to create an object of the required type.
  5. The pointer to the message object is returned to the caller.
  6. Processor class now invokes Unpack for the message object and specifies the received message's pointer.
  7. Unpack method first unpacks the header of the message
  8. Once the header is unpacked, message specific field unpacking is done.
  9. After Unpacking is completed, the Processor specific message handler is invoked.

Sending a Message

  1. Application asks the Processor class to send a message object.
  2. The Processor class then invokes the Pack functionality to obtain a packed message.
  3. Packed message is passed to the operating system.

Sample Code and Usage

Message Interface Design Pattern (Framework)
class Message
            {
            public:
            // Message specific pack method, to be defined according to the message's
            // fields. The base class functions pack and unpack the common header
            virtual int Pack(RawBuffer *pBuf) const
            {
            m_bitIndex = 0;
            PackBits(pBuf, 10, m_hdr.value);
            PackBits(pBuf, 6, m_hdr.version);
            PackBits(pBuf, 16, m_hdr.source);
            PackBits(pBuf, 16, m_hdr.destination);
            return m_bitIndex;
            }
            // Corresponding unpack method.
            virtual int Unpack(const RawBuffer *pBuf) const
            {
            m_bitIndex = 0;
            m_hdr.value = UnpackBits(pBuf, 10);
            m_hdr.version = UnpackBits(pBuf, 6 );
            m_hdr.source = UnpackBits(pBuf, 16);
            m_hdr.destination = UnpackBits(pBuf, 16);
            return m_bitIndex;
            }
            struct Header
            {
            int type;
            int version;
            int source;
            int destination;
            };
            protected:
            Header m_hdr;
            // Bit index is used to keep track of the current packing/unpacking byte index.
            int m_bitIndex;
            // PackBits packs a specified number of bits at the next bit index. The method increments
            // the bit index
            void PackBits(RawBuffer *pBuf, int numBits, int value) const;
            / UnpackBits packs a specified number of bits at the next bit index. The method increments
            // the bit index
            int UnpackBits(const RawBuffer *pBuf, int numBits) const;
            };
            // Type for message creation function pointers
            typedef Message *(*CreateMessageFunction)();
            class MessageFactory
            {
            // Mapping of message type, version and function pointers. Note that different versions
            // of the same message can be supported by this arragement. A different class is defined
            // for each version
            CreateMessageFunction m_messageCreateFunctions[MAX_MESSAGE_TYPES][MAX_MESSAGE_VERSIONS];
            public:
            // Register Message saves the function pointer for a message object creation function
            // for that class
            void RegisterMessage(int messageType, int messageVersion, CreateMessageFunction function)
            {
            m_messageCreateFunctions[messageType][messageVersion] = function;
            }
            // Create Message invokes the message creation function specific to the message type and version
            Message *CreateMessage(int messageType, int messageVersion)
            {
            CreateMessageFunction function = m_messageCreateFunctions[messageType][messageVersion];
            Message *pMsg = (*function)();
            return pMsg;
            }
            }
            class Processor
            {
            public:
            void ReceiveMessages()
            {
            RawBuffer *pBuf;
            Message *pMsg;
            while((pBuf = receive()))
            {
            pMsg = m_messageFactory.CreateMessage(pBuf->hdr.type, pBuf->hdr.version);
            pMsg->Unpack(pBuf);
            HandleMessage(pMsg);
            delete pMsg;
            }
            }
            void SendMessage(const Message *pMsg)
            {
            RawBuffer *pBuf;
            pBuf = pMsg->Pack();
            send(pMsg->Destination(), pBuf);
            }
            protected:
            MessageFactory m_messageFactory;
             void HandleMessage (const Message *pMsg) = 0;
            };

 

Message Interface Design Pattern (Example)

            class ResourceAllocMsg : public Message
            {
            private:
            enum [MAX_RESOURCES = 15; }
            int m_resourceType;
            int m_resourceCount;
            int m_resourceId[MAX_RESOURCES];
            public:
            // Message creation function that will be passed to the message factory
            static Message *CreateMessage()
            {
            return (new ResourceAllocMsg);
            }
            // Message specific pack and unpack methods. The
            // methods also return the complete bit level
            // length of the messages. These methods can be further
            // overriden by message classes that inherit from this class
            int Pack(RawBuffer *pBuf) const
            {
            // Call the base class Pack for header packing
            Message::Pack(pBuf);
            PackBits(pBuf, 5, m_resourceType);
            PackBits(pBuf, 4, m_resourceCount);
            for (i=0; i < MAX_RESOURCES; i++)
            {
            PackBits(pBuf, 4, m_resourceId[i]);
            }
            return m_bitIndex;
            }
            virtual int Unpack(const RawBuffer *pBuf)
            {
            // Call the base class Unpack for header unpacking
            hdr = Message::Unpack(pBuf);
            m_resourceType = UnpackBits(pBuf, 5);
            m_resourceCount = UnpackBits(pBuf, 4);
            for (i=0; i < MAX_RESOURCES; i++)
            {
            m_resourceId[i] = UnpackBits(pBuf, 4);
            }
            return m_bitIndex;
            }
            };
            class CASProcessor : public Processor
            {
            // Constructor registers all the messages with the message factory. If multiple versions of a message
            // are supported, RegisterMessage method will be invoked multiple times.
            CASProcessor() : Processor()
            {
            m_messageFactory.RegisterMessage(RESOURCE_ALLOC_MSG, 1, ResourceAllocationMessage::CreateMessage);
            m_messageFactory.RegisterMessage(RESOURCE_ALLOC_MSG, 2, NewResourceAllocationMessage::CreateMessage);
            m_messageFactory.RegisterMessage(RESOURCE_FREE_MSG, 1, ResourceFreeMessage::CreateMessage);
            . . .
            }
            // Processor will invoke HandleMessage when it receives a message, this method will pass the
            // message to the appropriate message handler class
            void HandleMessage(const Message *pMsg)
            {
            switch(pMsg->GetType())
            {
            case RESOURCE_ALLOC_MSG:
            resourceHandler.HandleResourceAllocMessage(pMsg);
            break;
            case RESOURCE_FREE_MSG:
            resourceHandler.HandleResourceFreeMessage(pMsg);
            break;
            default:
            }
            }
            };

Known Uses

Any type of message interfaces can be implemented using this pattern. A few examples are:

  • Standard telecom protocols like SS7, V5.2, ISUP, GSM, GPRS (Different versions of a protocol can be supported seamlessly)
  • Byte level packing for proprietary protocols. This gives the protocols independence from byte alignment and ordering for a particular processor.

Related Patterns

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多