Delphi中有一个线程类TThread是用来实现多线程编程的,这个绝大多数Delphi书藉都有说到,但基本上都是对TThread类的几个成员作一简单介绍,再说明一下Execute的实现和Synchronize的用法就完了。然而这并不是多线程编
程的全部,我写此文的目的在于对此作一个补充。 线程本质上是进程中一段并发运行的代码。一个进程至少有一个线程,即所谓的主线程。同时还可以有多个子线程。 当一个进程中用到超过一个线程时,就是所谓的“多线程”。 那么这个所谓的“一段代码”是如何定义的呢?其实就是一个函数或过程(对Delphi而言)。 如果用Windows API来创建线程的话,是通过一个叫做CreateThread的API函数来实现的,它的定义为: HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress, LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadId ); 其各参数如它们的名称所说,分别是:线程属性(用于在NT下进行线程的安全属性设置,在9X下无效),堆栈大小, 起始地址,参数,创建标志(用于设置线程创建时的状态),线程ID,最后返回线程Handle。其中的起始地址就是线 程函数的入口,直至线程函数结束,线程也就结束了。 因为CreateThread参数很多,而且是Windows的API,所以在C Runtime Library里提供了一个通用的线程函数(理论上 可以在任何支持线程的OS中使用): unsigned long _beginthread(void (_USERENTRY *__start)(void *), unsigned __stksize, void *__arg); Delphi也提供了一个相同功能的类似函数: function BeginThread( SecurityAttributes: Pointer; StackSize: LongWord; ThreadFunc: TThreadFunc; Parameter: Pointer; CreationFlags: LongWord; var ThreadId: LongWord ): Integer; 这三个函数的功能是基本相同的,它们都是将线程函数中的代码放到一个独立的线程中执行。线程函数与一般函数的 最大不同在于,线程函数一启动,这三个线程启动函数就返回了,主线程继续向下执行,而线程函数在一个独立的线 程中执行,它要执行多久,什么时候返回,主线程是不管也不知道的。 正常情况下,线程函数返回后,线程就终止了。但也有其它方式: Windows API: VOID ExitThread( DWORD dwExitCode ); C Runtime Library: void _endthread(void); Delphi Runtime Library: procedure EndThread(ExitCode: Integer); 为了记录一些必要的线程数据(状态/属性等),OS会为线程创建一个内部Object,如在Windows中那个Handle便是这 个内部Object的Handle,所以在线程结束的时候还应该释放这个Object。 虽然说用API或RTL(Runtime Library)已经可以很方便地进行多线程编程了,但是还是需要进行较多的细节处理,为此 Delphi在Classes单元中对线程作了一个较好的封装,这就是VCL的线程类:TThread 使用这个类也很简单,大多数的Delphi书籍都有说,基本用法是:先从TThread派生一个自己的线程类(因为TThread 是一个抽象类,不能生成实例),然后是Override抽象方法:Execute(这就是线程函数,也就是在线程中执行的代码 部分),如果需要用到可视VCL对象,还需要通过Synchronize过程进行。关于之方面的具体细节,这里不再赘述,请 参考相关书籍。 本文接下来要讨论的是TThread类是如何对线程进行封装的,也就是深入研究一下TThread类的实现。因为只是真正地 了解了它,才更好地使用它。 下面是DELPHI7中TThread类的声明(本文只讨论在Windows平台下的实现,所以去掉了所有有关Linux平台部分的代码 ): TThread = class private FHandle: THandle; FThreadID: THandle; FCreateSuspended: Boolean; FTerminated: Boolean; FSuspended: Boolean; FFreeOnTerminate: Boolean; FFinished: Boolean; FReturnValue: Integer; FOnTerminate: TNotifyEvent; FSynchronize: TSynchronizeRecord; FFatalException: TObject; procedure CallOnTerminate; class procedure Synchronize(ASyncRec: PSynchronizeRecord); overload; function GetPriority: TThreadPriority; procedure SetPriority(Value: TThreadPriority); procedure SetSuspended(Value: Boolean); protected procedure CheckThreadError(ErrCode: Integer); overload; procedure CheckThreadError(Success: Boolean); overload; procedure DoTerminate; virtual; procedure Execute; virtual; abstract; procedure Synchronize(Method: TThreadMethod); overload; property ReturnValue: Integer read FReturnValue write FReturnValue; property Terminated: Boolean read FTerminated; public constructor Create(CreateSuspended: Boolean); destructor Destroy; override; procedure AfterConstruction; override; procedure Resume; procedure Suspend; procedure Terminate; function WaitFor: LongWord; class procedure Synchronize(AThread: TThread; AMethod: TThreadMethod); overload; class procedure StaticSynchronize(AThread: TThread; AMethod: TThreadMethod); property FatalException: TObject read FFatalException; property FreeOnTerminate: Boolean read FFreeOnTerminate write FFreeOnTerminate; property Handle: THandle read FHandle; property Priority: TThreadPriority read GetPriority write SetPriority; property Suspended: Boolean read FSuspended write SetSuspended; property ThreadID: THandle read FThreadID; property OnTerminate: TNotifyEvent read FOnTerminate write FOnTerminate; end; TThread类在Delphi的RTL里算是比较简单的类,类成员也不多,类属性都很简单明白,本文将只对几个比较重要的类 成员方法和唯一的事件:OnTerminate作详细分析。 首先就是构造函数: constructor TThread.Create(CreateSuspended: Boolean); begin inherited Create; AddThread; FSuspended := CreateSuspended; FCreateSuspended := CreateSuspended; FHandle := BeginThread(nil, 0, @ThreadProc, Pointer(Self), CREATE_SUSPENDED, FThreadID); if FHandle = 0 then raise EThread.CreateResFmt(@SThreadCreateError, [SysErrorMessage(GetLastError)]); end; 虽然这个构造函数没有多少代码,但却可以算是最重要的一个成员,因为线程就是在这里被创建的。 在通过Inherited调用TObject.Create后,第一句就是调用一个过程:AddThread,其源码如下: procedure AddThread; begin InterlockedIncrement(ThreadCount); end; 同样有一个对应的RemoveThread: procedure RemoveThread; begin InterlockedDecrement(ThreadCount); end; 它们的功能很简单,就是通过增减一个全局变量来统计进程中的线程数。只是这里用于增减变量的并不是常用的 Inc/Dec过程,而是用了InterlockedIncrement/InterlockedDecrement这一对过程,它们实现的功能完全一样,都是 对变量加一或减一。但它们有一个最大的区别,那就是InterlockedIncrement/InterlockedDecrement是线程安全的。 即它们在多线程下能保证执行结果正确,而Inc/Dec不能。或者按操作系统理论中的术语来说,这是一对“原语”操作。 以加一为例来说明二者实现细节上的不同: 一般来说,对内存数据加一的操作分解以后有三个步骤: 1、 从内存中读出数据 2、 数据加一 3、 存入内存 现在假设在一个两个线程的应用中用Inc进行加一操作可能出现的一种情况: 1、 线程A从内存中读出数据(假设为3) 2、 线程B从内存中读出数据(也是3) 3、 线程A对数据加一(现在是4) 4、 线程B对数据加一(现在也是4) 5、 线程A将数据存入内存(现在内存中的数据是4) 6、 线程B也将数据存入内存(现在内存中的数据还是4,但两个线程都对它加了一,应该是5才对,所以这里出现了 错误的结果) 而用InterlockIncrement过程则没有这个问题,因为所谓“原语”是一种不可中断的操作,即操作系统能保证在一个 “原语”执行完毕前不会进行线程切换。所以在上面那个例子中,只有当线程A执行完将数据存入内存后,线程B才可 以开始从中取数并进行加一操作,这样就保证了即使是在多线程情况下,结果也一定会是正确的。 前面那个例子也说明一种“线程访问冲突”的情况,这也就是为什么线程之间需要“同步”(Synchronize),关于这 个,在后面说到同步时还会再详细讨论。 说到同步,有一个题外话:加拿大滑铁卢大学的教授李明曾就Synchronize一词在“线程同步”中被译作“同步”提出 过异议,个人认为他说的其实很有道理。在中文中“同步”的意思是“同时发生”,而“线程同步”目的就是避免这 种“同时发生”的事情。而在英文中,Synchronize的意思有两个:一个是传统意义上的同步(To occur at the same time),另一个是“协调一致”(To operate in unison)。在“线程同步”中的Synchronize一词应该是指后面一种 意思,即“保证多个线程在访问同一数据时,保持协调一致,避免出错”。不过像这样译得不准的词在IT业还有很多 ,既然已经是约定俗成了,本文也将继续沿用,只是在这里说明一下,因为软件开发是一项细致的工作,该弄清楚的 ,绝不能含糊。 扯远了,回到TThread的构造函数上,接下来最重要就是这句了: FHandle := BeginThread(nil, 0, @ThreadProc, Pointer(Self), CREATE_SUSPENDED, FThreadID); 这里就用到了前面说到的Delphi RTL函数BeginThread,它有很多参数,关键的是第三、四两个参数。第三个参数就是 前面说到的线程函数,即在线程中执行的代码部分。第四个参数则是传递给线程函数的参数,在这里就是创建的线程 对象(即Self)。其它的参数中,第五个是用于设置线程在创建后即挂起,不立即执行(启动线程的工作是在 AfterConstruction中根据CreateSuspended标志来决定的),第六个是返回线程ID。 现在来看TThread的核心:线程函数ThreadProc。有意思的是这个线程类的核心却不是线程的成员,而是一个全局函数 (因为BeginThread过程的参数约定只能用全局函数)。下面是它的代码: function ThreadProc(Thread: TThread): Integer; var FreeThread: Boolean; begin try if not Thread.Terminated then try Thread.Execute; except Thread.FFatalException := AcquireExceptionObject; end; finally FreeThread := Thread.FFreeOnTerminate; Result := Thread.FReturnValue; Thread.DoTerminate; Thread.FFinished := True; SignalSyncEvent; if FreeThread then Thread.Free; EndThread(Result); end; end; 虽然也没有多少代码,但却是整个TThread中最重要的部分,因为这段代码是真正在线程中执行的代码。下面对代码作 逐行说明: 首先判断线程类的Terminated标志,如果未被标志为终止,则调用线程类的Execute方法执行线程代码,因为TThread 是抽象类,Execute方法是抽象方法,所以本质上是执行派生类中的Execute代码。 所以说,Execute就是线程类中的线程函数,所有在Execute中的代码都需要当作线程代码来考虑,如防止访问冲突等。 如果Execute发生异常,则通过AcquireExceptionObject取得异常对象,并存入线程类的FFatalException成员中。 最后是线程结束前做的一些收尾工作。局部变量FreeThread记录了线程类的FreeOnTerminated属性的设置,然后将线 程返回值设置为线程类的返回值属性的值。然后执行线程类的DoTerminate方法。 DoTerminate方法的代码如下: procedure TThread.DoTerminate; begin if Assigned(FOnTerminate) then Synchronize(CallOnTerminate); end; 很简单,就是通过Synchronize来调用CallOnTerminate方法,而CallOnTerminate方法的代码如下,就是简单地调用 OnTerminate事件: procedure TThread.CallOnTerminate; begin if Assigned(FOnTerminate) then FOnTerminate(Self); end; 因为OnTerminate事件是在Synchronize中执行的,所以本质上它并不是线程代码,而是主线程代码(具体见后面对 Synchronize的分析)。 执行完OnTerminate后,将线程类的FFinished标志设置为True。接下来执行SignalSyncEvent过程,其代码如下: procedure SignalSyncEvent; begin SetEvent(SyncEvent); end; 也很简单,就是设置一下一个全局Event:SyncEvent,关于Event的使用,本文将在后文详述,而SyncEvent的用途将 在WaitFor过程中说明。 然后根据FreeThread中保存的FreeOnTerminate设置决定是否释放线程类,在线程类释放时,还有一些些操作,详见接 下来的析构函数实现。 最后调用EndThread结束线程,返回线程返回值。至此,线程完全结束。 说完构造函数,再来看析构函数: destructor TThread.Destroy; begin if (FThreadID <> 0) and not FFinished then begin Terminate; if FCreateSuspended then Resume; WaitFor; end; if FHandle <> 0 then CloseHandle(FHandle); inherited Destroy; FFatalException.Free; RemoveThread; end; 在线程对象被释放前,首先要检查线程是否还在执行中,如果线程还在执行中(线程ID不为0,并且线程结束标志未设 置),则调用Terminate过程结束线程。Terminate过程只是简单地设置线程类的Terminated标志,如下面的代码: procedure TThread.Terminate; begin FTerminated := True; end; 所以线程仍然必须继续执行到正常结束后才行,而不是立即终止线程,这一点要注意。 在这里说一点题外话:很多人都问过我,如何才能“立即”终止线程(当然是指用TThread创建的线程)。结果当然是 不行!终止线程的唯一办法就是让Execute方法执行完毕,所以一般来说,要让你的线程能够尽快终止,必须在 Execute方法中在较短的时间内不断地检查Terminated标志,以便能及时地退出。这是设计线程代码的一个很重要的原 则! 当然如果你一定要能“立即”退出线程,那么TThread类不是一个好的选择,因为如果用API强制终止线程的话,最终 会导致TThread线程对象不能被正确释放,在对象析构时出现Access Violation。这种情况你只能用API或RTL函数来创 建线程。 如果线程处于启动挂起状态,则将线程转入运行状态,然后调用WaitFor进行等待,其功能就是等待到线程结束后才继 续向下执行。关于WaitFor的实现,将放到后面说明。 线程结束后,关闭线程Handle(正常线程创建的情况下Handle都是存在的),释放操作系统创建的线程对象。 然后调用TObject.Destroy释放本对象,并释放已经捕获的异常对象,最后调用RemoveThread减小进程的线程数。 其它关于Suspend/Resume及线程优先级设置等方面,不是本文的重点,不再赘述。下面要讨论的是本文的另两个重点 :Synchronize和WaitFor。 但是在介绍这两个函数之前,需要先介绍另外两个线程同步技术:事件和临界区。 事件(Event)与Delphi中的事件有所不同。从本质上说,Event其实相当于一个全局的布尔变量。它有两个赋值操作 :Set和Reset,相当于把它设置为True或False。而检查它的值是通过WaitFor操作进行。对应在Windows平台上,是三 个API函数:SetEvent、ResetEvent、WaitForSingleObject(实现WaitFor功能的API还有几个,这是最简单的一个)。 这三个都是原语,所以Event可以实现一般布尔变量不能实现的在多线程中的应用。Set和Reset的功能前面已经说过了 ,现在来说一下WaitFor的功能: WaitFor的功能是检查Event的状态是否是Set状态(相当于True),如果是则立即返回,如果不是,则等待它变为Set 状态,在等待期间,调用WaitFor的线程处于挂起状态。另外WaitFor有一个参数用于超时设置,如果此参数为0,则不 等待,立即返回Event的状态,如果是INFINITE则无限等待,直到Set状态发生,若是一个有限的数值,则等待相应的 毫秒数后返回Event的状态。 当Event从Reset状态向Set状态转换时,唤醒其它由于WaitFor这个Event而挂起的线程,这就是它为什么叫Event的原 因。所谓“事件”就是指“状态的转换”。通过Event可以在线程间传递这种“状态转换”信息。 当然用一个受保护(见下面的临界区介绍)的布尔变量也能实现类似的功能,只要用一个循环检查此布尔值的代码来 代替WaitFor即可。从功能上说完全没有问题,但实际使用中就会发现,这样的等待会占用大量的CPU资源,降低系统 性能,影响到别的线程的执行速度,所以是不经济的,有的时候甚至可能会有问题。所以不建议这样用。 临界区(CriticalSection)则是一项共享数据访问保护的技术。它其实也是相当于一个全局的布尔变量。但对它的操 作有所不同,它只有两个操作:Enter和Leave,同样可以把它的两个状态当作True和False,分别表示现在是否处于临 界区中。这两个操作也是原语,所以它可以用于在多线程应用中保护共享数据,防止访问冲突。 用临界区保护共享数据的方法很简单:在每次要访问共享数据之前调用Enter设置进入临界区标志,然后再操作数据, 最后调用Leave离开临界区。它的保护原理是这样的:当一个线程进入临界区后,如果此时另一个线程也要访问这个数 据,则它会在调用Enter时,发现已经有线程进入临界区,然后此线程就会被挂起,等待当前在临界区的线程调用 Leave离开临界区,当另一个线程完成操作,调用Leave离开后,此线程就会被唤醒,并设置临界区标志,开始操作数 据,这样就防止了访问冲突。 以前面那个InterlockedIncrement为例,我们用CriticalSection(Windows API)来实现它: Var InterlockedCrit : TRTLCriticalSection; Procedure InterlockedIncrement( var aValue : Integer ); Begin EnterCriticalSection( InterlockedCrit ); Inc( aValue ); LeaveCriticalSection( InterlockedCrit ); End; 现在再来看前面那个例子: 1. 线程A进入临界区(假设数据为3) 2. 线程B进入临界区,因为A已经在临界区中,所以B被挂起 3. 线程A对数据加一(现在是4) 4. 线程A离开临界区,唤醒线程B(现在内存中的数据是4) 5. 线程B被唤醒,对数据加一(现在就是5了) 6. 线程B离开临界区,现在的数据就是正确的了。 临界区就是这样保护共享数据的访问。 关于临界区的使用,有一点要注意:即数据访问时的异常情况处理。因为如果在数据操作时发生异常,将导致Leave操 作没有被执行,结果将使本应被唤醒的线程未被唤醒,可能造成程序的没有响应。所以一般来说,如下面这样使用临 界区才是正确的做法: EnterCriticalSection Try // 操作临界区数据 Finally LeaveCriticalSection End; 最后要说明的是,Event和CriticalSection都是操作系统资源,使用前都需要创建,使用完后也同样需要释放。如 TThread类用到的一个全局Event:SyncEvent和全局CriticalSection:TheadLock,都是在 InitThreadSynchronization和DoneThreadSynchronization中进行创建和释放的,而它们则是在Classes单元的 Initialization和Finalization中被调用的。 由于在TThread中都是用API来操作Event和CriticalSection的,所以前面都是以API为例,其实Delphi已经提供了对它 们的封装,在SyncObjs单元中,分别是TEvent类和TCriticalSection类。用法也与前面用API的方法相差无几。因为 TEvent的构造函数参数过多,为了简单起见,Delphi还提供了一个用默认参数初始化的Event类:TSimpleEvent。 顺便再介绍一下另一个用于线程同步的类:TMultiReadExclusiveWriteSynchronizer,它是在SysUtils单元中定义的 。据我所知,这是Delphi RTL中定义的最长的一个类名,还好它有一个短的别名:TMREWSync。至于它的用处,我想光 看名字就可以知道了,我也就不多说了。 有了前面对Event和CriticalSection的准备知识,可以正式开始讨论Synchronize和WaitFor了。 我们知道,Synchronize是通过将部分代码放到主线程中执行来实现线程同步的,因为在一个进程中,只有一个主线程 。先来看看Synchronize的实现: procedure TThread.Synchronize(Method: TThreadMethod); begin FSynchronize.FThread := Self; FSynchronize.FSynchronizeException := nil; FSynchronize.FMethod := Method; Synchronize(@FSynchronize); end; 其中FSynchronize是一个记录类型: PSynchronizeRecord = ^TSynchronizeRecord; TSynchronizeRecord = record FThread: TObject; FMethod: TThreadMethod; FSynchronizeException: TObject; end; 用于进行线程和主线程之间进行数据交换,包括传入线程类对象,同步方法及发生的异常。 在Synchronize中调用了它的一个重载版本,而且这个重载版本比较特别,它是一个“类方法”。所谓类方法,是一种 特殊的类成员方法,它的调用并不需要创建类实例,而是像构造函数那样,通过类名调用。之所以会用类方法来实现 它,是因为为了可以在线程对象没有创建时也能调用它。不过实际中是用它的另一个重载版本(也是类方法)和另一 个类方法StaticSynchronize。下面是这个Synchronize的代码: class procedure TThread.Synchronize(ASyncRec: PSynchronizeRecord); var SyncProc: TSyncProc; begin if GetCurrentThreadID = MainThreadID then ASyncRec.FMethod else begin SyncProc.Signal := CreateEvent(nil, True, False, nil); try EnterCriticalSection(ThreadLock); try if SyncList = nil then SyncList := TList.Create; SyncProc.SyncRec := ASyncRec; SyncList.Add(@SyncProc); SignalSyncEvent; if Assigned(WakeMainThread) then WakeMainThread(SyncProc.SyncRec.FThread); LeaveCriticalSection(ThreadLock); try WaitForSingleObject(SyncProc.Signal, INFINITE); finally EnterCriticalSection(ThreadLock); end; finally LeaveCriticalSection(ThreadLock); end; finally CloseHandle(SyncProc.Signal); end; if Assigned(ASyncRec.FSynchronizeException) then raise ASyncRec.FSynchronizeException; end; end; 这段代码略多一些,不过也不算太复杂。 首先是判断当前线程是否是主线程,如果是,则简单地执行同步方法后返回。 如果不是主线程,则准备开始同步过程。 通过局部变量SyncProc记录线程交换数据(参数)和一个Event Handle,其记录结构如下: TSyncProc = record SyncRec: PSynchronizeRecord; Signal: THandle; end; 然后创建一个Event,接着进入临界区(通过全局变量ThreadLock进行,因为同时只能有一个线程进入Synchronize状 态,所以可以用全局变量记录),然后就是把这个记录数据存入SyncList这个列表中(如果这个列表不存在的话,则 创建它)。可见ThreadLock这个临界区就是为了保护对SyncList的访问,这一点在后面介绍CheckSynchronize时会再 次看到。 再接下就是调用SignalSyncEvent,其代码在前面介绍TThread的构造函数时已经介绍过了,它的功能就是简单地将 SyncEvent作一个Set的操作。关于这个SyncEvent的用途,将在后面介绍WaitFor时再详述。 接下来就是最主要的部分了:调用WakeMainThread事件进行同步操作。WakeMainThread是一个TNotifyEvent类型的全 局事件。这里之所以要用事件进行处理,是因为Synchronize方法本质上是通过消息,将需要同步的过程放到主线程中 执行,如果在一些没有消息循环的应用中(如Console或DLL)是无法使用的,所以要使用这个事件进行处理。 而响应这个事件的是Application对象,下面两个方法分别用于设置和清空WakeMainThread事件的响应(来自Forms单元): procedure TApplication.HookSynchronizeWakeup; begin Classes.WakeMainThread := WakeMainThread; end; procedure TApplication.UnhookSynchronizeWakeup; begin Classes.WakeMainThread := nil; end; 上面两个方法分别是在TApplication类的构造函数和析构函数中被调用。 这就是在Application对象中WakeMainThread事件响应的代码,消息就是在这里被发出的,它利用了一个空消息来实现: procedure TApplication.WakeMainThread(Sender: TObject); begin PostMessage(Handle, WM_NULL, 0, 0); end; 而这个消息的响应也是在Application对象中,见下面的代码(删除无关的部分): procedure TApplication.WndProc(var Message: TMessage); … begin try … with Message do case Msg of … WM_NULL: CheckSynchronize; … except HandleException(Self); end; end; 其中的CheckSynchronize也是定义在Classes单元中的,由于它比较复杂,暂时不详细说明,只要知道它是具体处理 Synchronize功能的部分就好,现在继续分析Synchronize的代码。 在执行完WakeMainThread事件后,就退出临界区,然后调用WaitForSingleObject开始等待在进入临界区前创建的那个 Event。这个Event的功能是等待这个同步方法的执行结束,关于这点,在后面分析CheckSynchronize时会再说明。 注意在WaitForSingleObject之后又重新进入临界区,但没有做任何事就退出了,似乎没有意义,但这是必须的! 因为临界区的Enter和Leave必须严格的一一对应。那么是否可以改成这样呢: if Assigned(WakeMainThread) then WakeMainThread(SyncProc.SyncRec.FThread); WaitForSingleObject(SyncProc.Signal, INFINITE); finally LeaveCriticalSection(ThreadLock); end; 上面的代码和原来的代码最大的区别在于把WaitForSingleObject也纳入临界区的限制中了。看上去没什么影响,还使 代码大大简化了,但真的可以吗? 事实上是不行! 因为我们知道,在Enter临界区后,如果别的线程要再进入,则会被挂起。而WaitFor方法则会挂起当前线程,直到等 待别的线程SetEvent后才会被唤醒。如果改成上面那样的代码的话,如果那个SetEvent的线程也需要进入临界区的话 ,死锁(Deadlock)就发生了(关于死锁的理论,请自行参考操作系统原理方面的资料)。 死锁是线程同步中最需要注意的方面之一! 最后释放开始时创建的Event,如果被同步的方法返回异常的话,还会在这里再次抛出异常。 回到前面CheckSynchronize,见下面的代码: function CheckSynchronize(Timeout: Integer = 0): Boolean; var SyncProc: PSyncProc; LocalSyncList: TList; begin if GetCurrentThreadID <> MainThreadID then raise EThread.CreateResFmt(@SCheckSynchronizeError, [GetCurrentThreadID]); if Timeout > 0 then WaitForSyncEvent(Timeout) else ResetSyncEvent; LocalSyncList := nil; EnterCriticalSection(ThreadLock); try Integer(LocalSyncList) := InterlockedExchange(Integer(SyncList), Integer(LocalSyncList)); try Result := (LocalSyncList <> nil) and (LocalSyncList.Count > 0); if Result then begin while LocalSyncList.Count > 0 do begin SyncProc := LocalSyncList[0]; LocalSyncList.Delete(0); LeaveCriticalSection(ThreadLock); try try SyncProc.SyncRec.FMethod; except SyncProc.SyncRec.FSynchronizeException := AcquireExceptionObject; end; finally EnterCriticalSection(ThreadLock); end; SetEvent(SyncProc.signal); end; end; finally LocalSyncList.Free; end; finally LeaveCriticalSection(ThreadLock); end; end; 首先,这个方法必须在主线程中被调用(如前面通过消息传递到主线程),否则就抛出异常。 接下来调用ResetSyncEvent(它与前面SetSyncEvent对应的,之所以不考虑WaitForSyncEvent的情况,是因为只有在 Linux版下才会调用带参数的CheckSynchronize,Windows版下都是调用默认参数0的CheckSynchronize)。 现在可以看出SyncList的用途了:它是用于记录所有未被执行的同步方法的。因为主线程只有一个,而子线程可能有 很多个,当多个子线程同时调用同步方法时,主线程可能一时无法处理,所以需要一个列表来记录它们。 在这里用一个局部变量LocalSyncList来交换SyncList,这里用的也是一个原语:InterlockedExchange。同样,这里 也是用临界区将对SyncList的访问保护起来。 只要LocalSyncList不为空,则通过一个循环来依次处理累积的所有同步方法调用。最后把处理完的LocalSyncList释 放掉,退出临界区。 再来看对同步方法的处理:首先是从列表中移出(取出并从列表中删除)第一个同步方法调用数据。然后退出临界区 (原因当然也是为了防止死锁)。 接着就是真正的调用同步方法了。 如果同步方法中出现异常,将被捕获后存入同步方法数据记录中。 重新进入临界区后,调用SetEvent通知调用线程,同步方法执行完成了(详见前面Synchronize中的 WaitForSingleObject调用)。 至此,整个Synchronize的实现介绍完成。 最后来说一下WaitFor,它的功能就是等待线程执行结束。其代码如下: function TThread.WaitFor: LongWord; var H: array[0..1] of THandle; WaitResult: Cardinal; Msg: TMsg; begin H[0] := FHandle; if GetCurrentThreadID = MainThreadID then begin WaitResult := 0; H[1] := SyncEvent; repeat { This prevents a potential deadlock if the background thread does a SendMessage to the foreground thread } if WaitResult = WAIT_OBJECT_0 + 2 then PeekMessage(Msg, 0, 0, 0, PM_NOREMOVE); WaitResult := MsgWaitForMultipleObjects(2, H, False, 1000, QS_SENDMESSAGE); CheckThreadError(WaitResult <> WAIT_FAILED); if WaitResult = WAIT_OBJECT_0 + 1 then CheckSynchronize; until WaitResult = WAIT_OBJECT_0; end else WaitForSingleObject(H[0], INFINITE); CheckThreadError(GetExitCodeThread(H[0], Result)); end; 如果不是在主线程中执行WaitFor的话,很简单,只要调用WaitForSingleObject等待此线程的Handle为Signaled状态 即可。 如果是在主线程中执行WaitFor则比较麻烦。首先要在Handle数组中增加一个SyncEvent,然后循环等待,直到线程结 束(即MsgWaitForMultipleObjects返回WAIT_OBJECT_0,详见MSDN中关于此API的说明)。 在循环等待中作如下处理:如果有消息发生,则通过PeekMessage取出此消息(但并不把它从消息循环中移除),然后 调用MsgWaitForMultipleObjects来等待线程Handle或SyncEvent出现Signaled状态,同时监听消息(QS_SENDMESSAGE 参数,详见MSDN中关于此API的说明)。可以把此API当作一个可以同时等待多个Handle的WaitForSingleObject。如果 是SyncEvent被SetEvent(返回WAIT_OBJECT_0 + 1),则调用CheckSynchronize处理同步方法。 为什么在主线程中调用WaitFor必须用MsgWaitForMultipleObjects,而不能用WaitForSingleObject等待线程结束呢? 因为防止死锁。由于在线程函数Execute中可能调用Synchronize处理同步方法,而同步方法是在主线程中执行的,如 果用WaitForSingleObject等待的话,则主线程在这里被挂起,同步方法无法执行,导致线程也被挂起,于是发生死锁。 而改用WaitForMultipleObjects则没有这个问题。首先,它的第三个参数为False,表示只要线程Handle或SyncEvent 中只要有一个Signaled即可使主线程被唤醒,至于加上QS_SENDMESSAGE是因为Synchronize是通过消息传到主线程来的 ,所以还要防止消息被阻塞。这样,当线程中调用Synchronize时,主线程就会被唤醒并处理同步调用,在调用完成后 继续进入挂起等待状态,直到线程结束。 至此,对线程类TThread的分析可以告一个段落了,对前面的分析作一个总结: 1、 线程类的线程必须按正常的方式结束,即Execute执行结束,所以在其中的代码中必须在适当的地方加入足够多 的对Terminated标志的判断,并及时退出。如果必须要“立即”退出,则不能使用线程类,而要改用API或RTL函数。 2、 对可视VCL的访问要放在Synchronize中,通过消息传递到主线程中,由主线程处理。 3、 线程共享数据的访问应该用临界区进行保护(当然用Synchronize也行)。 4、 线程通信可以采用Event进行(当然也可以用Suspend/Resume)。 5、 当在多线程应用中使用多种线程同步方式时,一定要小心防止出现死锁 本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/cui55/archive/2008/07/09/2629235.aspx
---------------------以下是实例--------------------
窗体单元: unit main; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs,myThread, StdCtrls; type TForm1 = class(TForm) Label1: TLabel; Button1: TButton; Button2: TButton; Button3: TButton; Label2: TLabel; Label3: TLabel; procedure Button1Click(Sender: TObject); procedure Button2Click(Sender: TObject); procedure Button3Click(Sender: TObject); procedure FormCreate(Sender: TObject); private procedure TThreadFinsh(Sender:TObject); public { Public declarations } end; var Form1: TForm1; t1,t2,t3:TThread; implementation {$R *.dfm} procedure TForm1.TThreadFinsh(Sender:TObject); begin ShowMessage('一个线程完毕!'); end; procedure TForm1.Button1Click(Sender: TObject); begin if Button1.Caption='开始1' then begin Button1.Caption:='关闭'; t1.Resume; end else begin Button1.Caption:='开始1'; t1.Suspend; end; end; procedure TForm1.Button2Click(Sender: TObject); begin if Button2.Caption='开始2' then begin Button2.Caption:='关闭'; t2.Resume; end else begin Button2.Caption:='开始2'; t2.Suspend; end; end; procedure TForm1.Button3Click(Sender: TObject); begin if Button3.Caption='开始3' then begin Button3.Caption:='关闭'; t3.Resume; end else begin Button3.Caption:='开始3'; t3.Suspend; end; end; procedure TForm1.FormCreate(Sender: TObject); begin t1:=TmyThread1.Create(Label1,10); t1.OnTerminate:=TThreadFinsh; t2:=TmyThread2.Create(Label2,20); t2.OnTerminate:=TThreadFinsh; t3:=TmyThread3.Create(Label3,30); t3.OnTerminate:=TThreadFinsh; end; end. 线程单元: unit myThread; interface uses Classes,Windows,SysUtils,Forms,StdCtrls; type TTestThread = class(TThread) private FLabel:TLabel; FSleepDec:Integer; protected procedure Execute; override; public constructor Create(lbl:TLabel;sleepSec:Integer); end; TmyThread1=class(TTestThread) end; TmyThread2=class(TTestThread) end; TmyThread3=class(TTestThread) end; implementation uses main; { TTestThread } constructor TTestThread.Create(lbl:TLabel;sleepSec:Integer); //参数传递 begin FLabel:=lbl; FSleepDec:=sleepSec; FreeOnTerminate:=True; //让线程终止是触发OnTerminate事件 inherited Create(True);//不立即执行,只有调用resume才开始 end; procedure TTestThread.Execute; var i:Integer; begin for i:=0 to 1000 do begin if terminated then Break; FLabel.Caption:=IntToStr(i); Sleep(FSleepDec); end; end; end. 本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/cui55/archive/2008/07/09/2629248.aspx
-----------------------------另一个-------------------------------------------- Delphi的TThread类 收藏 我们常有工作线程和主线程之分,工作线程负责作一些后台操作,比如接收邮件;主线程负责界面上的一些显示。工作线程的好处在某些时候是不言而喻的,你的主界面可以响应任何操作,而背后的线程却在默默地工作。 VCL中,工作线程执行在Execute方法中,你必须从TThread继承一个类并覆盖Execute方法,在这个方法中,所有代码都是在另一个 线程中执行的,除此之外,你的线程类的其他方法都在主线程执行,包括构造方法,析构方法,Resume等,很多人常常忽略了这一点。 最简单的一个线程类如下:
TMyThread = class(TThread)
protected
procedure Execute; override;
end;
在Execute中的代码,有一个技术要点,如果你的代码执行时间很短,像这样,Sleep(1000),那没有关系;如果是这样Sleep (10000),10秒,那么你就不能直接这样写了,须把这10秒拆分成10个1秒,然后判断Terminated属性,像下面这样:
procedure TMyThread.Execute;
var
i: Integer;
begin
for i := 0 to 9 do
if not Terminated then
Sleep(1000)
else
Break;
end;
这样写有什么好处呢,想想你要关闭程序,在关闭的时候调用MyThread.Free,这个时候线程并没有马上结束,它调用WaitFor,等待 Execute执行完后才能释放。你的程序就必须等10秒以后才能关闭,受得了吗。如果像上面那样写,在程序关闭时,调用Free之后,它顶多再等一秒就 会关闭。为什么?答案得去线程类的Destroy中找,它会先调用Terminate方法,在这个方法里面它把Terminated设为True(仅此而 已,很多人以为是结束线程,其实不是)。请记住这一切是在主线程中操作的,所以和Execute是并行执行的。既然Terminated属性已为 Ture,那么在Execute中判断之后,当然就Break了,Execute执行完毕,线程类也正常释放。
或者有人说,TThread可以设FreeOnTerminate属性为True,线程类就能自动释放。除非你的线程执行的任务很简单,不然,还是不要去理会这个属性,一切由你来操作,才能使线程更灵活强大。
接下来的问题是如何使工作线程和主线程很好的通信,很多时候主线程必须得到工作线程的通知,才能做出响应。比如接收邮件,工作线程向服务器收取邮件,收取完毕之后,它得通知主线程收到多少封邮件,主线程才能弹出一个窗口通知用户。
在VCL中,我们可以用两种方法,一种是向主线程中的窗体发送消息,另一种是使用异步事件。第一种方法其实没有第二种来得方便。想想线程类中的OnTerminate事件,这个事件由线程函数的堆栈引起,却在主线程执行。
事实上,真正的线程函数是这个:
function ThreadProc(Thread: TThread): Integer;
函数里面有Thread.Execute,这就是为什么Execute是在其他线程中执行,该方法执行之后,有如下句:
Thread.DoTerminate;
而线程类的DoTerminate方法里面是
if Assigned(FOnTerminate) then Synchronize(CallOnTerminate);
显然Synchronize方法使得CallOnTerminate在主线程中执行,而CallOnTerminate里面的代码其实就是:
if Assigned(FOnTerminate) then FOnTerminate(Self);
只要Execute方法一执行完就发生OnTerminate事件。不过有一点是必须注意,OnTerminate事件发生后,线程类不一定会释 放,只有在FreeOnTerminate为True之后,才会Thread.Free。看一下ThreadProc函数就知道。
依照Onterminate事件,我们可以设计自己的异步事件。
Synchronize方法只能传进一个无参数的方法类型,但我们的事件经常是要带一些参数的,这个稍加思考就可以得到解决,即在线程类中保存参数,触发事件前先设置参数,再调用异步事件,参数复杂的可以用记录或者类来实现。
假设这样,上面的代码每睡一秒,线程即向外面引发一次事件,我们的类可以这样设计:
TSecondEvent = procedure (Second: Integer) of object;
TMyThread = class(TThread) private FSecond: Integer; FSecondEvent: TSecondEvent; procedure CallSecondEvent; protected procedure Execute; override; public property SencondEvent: TSecondEvent read FSecondEvent write FSecondEvent; end; { TMyThread }
procedure TMyThread.CallSecondEvent;
begin if Assigned(FSecondEvent) then FSecondEvent(FSecond); end; procedure TMyThread.Execute;
var i: Integer; begin for i := 0 to 9 do if not Terminated then begin Sleep(1000); FSecond := i; Synchronize(CallSecondEvent); end else Break; end; 在主窗体中假设我们这样操作线程: procedure TForm1.Button1Click(Sender: TObject);
begin MyThread := TMyThread.Create(true); MyThread.OnTerminate := ThreadTerminate; MyThread.SencondEvent := SecondEvent; MyThread.Resume; end; procedure TForm1.ThreadTerminate(Sender: TObject);
begin ShowMessage('ok'); end; procedure TForm1.SecondEvent(Second: Integer);
begin Edit1.Text := IntToStr(Second); end; 我们将每隔一秒就得到一次通知并在Edit中显示出来。
现在我们已经知道如何正确使用Execute方法,以及如何在主线程与工作线程之间通信了。但问题还没有结束,有一种情况出乎我的意料之外,即如果 线程中有一些资源,Execute正在使用这些资源,而主线程要释放这个线程,这个线程在释放的过程中会释放掉资源。想想会不会有问题呢,两个线程,一个 在使用资源,一个在释放资源,会出现什么情况呢,
用下面代码来说明:
type
TMyClass = class private FSecond: Integer; public procedure SleepOneSecond; end; TMyThread = class(TThread)
private FMyClass: TMyClass; protected procedure Execute; override; public constructor MyCreate(CreateSuspended: Boolean); destructor Destroy; override; end; implementation
{ TMyThread }
constructor TMyThread.MyCreate(CreateSuspended: Boolean);
begin inherited Create(CreateSuspended); FMyClass := TMyClass.Create; end; destructor TMyThread.Destroy;
begin FMyClass.Free; FMyClass := nil; inherited; end; procedure TMyThread.Execute;
var i: Integer; begin for i := 0 to 9 do FMyClass.SleepOneSecond; end; { TMyClass }
procedure TMyClass.SleepOneSecond;
begin FSecond := 0; Sleep(1000); end; end.
用下面的代码来调用上面的类:
procedure TForm1.Button1Click(Sender: TObject);
begin MyThread := TMyThread.MyCreate(true); MyThread.OnTerminate := ThreadTerminate; MyThread.Resume; end; procedure TForm1.Button2Click(Sender: TObject);
begin MyThread.Free; end; 先点击Button1创建一个线程,再点击Button2释放该类,出现什么情况呢,违法访问,是的,MyThread.Free时,MyClass被释放掉了
FMyClass.Free;
FMyClass := nil;
而此时Execute却还在执行,并且调用MyClass的方法,当然就出现违法访问。对于这种情况,有什么办法来防止呢,我想到一种方法,即在线程类中使用一个成员,假设为FFinished,在Execute方法中有如下的形式:
FFinished := False;
try
//... ...
finally
FFinished := True;
End;
接着在线程类的Destroy中有如下形式:
While not FFinished do
Sleep(100);
MyClass.Free;
这样便能保证MyClass能被正确释放。
线程是一种很有用的技术。但使用不当,常使人头痛。在CSDN论坛上看到一些人问,我的窗口在线程中调用为什么出错,主线程怎么向其他线程发送消息等等,其实,我们在抱怨线程难用时,也要想想我们使用的方法对不对,只要遵循一些正确的使用规则,线程其实很简单。
后记
上面有一处代码有些奇怪:FMyClass.Free; FMyClass := nil;如果你只写FMyClass.Free,线程类还不会出现异常,即调用FMyClass.SleepOneSecond不会出错。我在主线程中试了下面的代码
MyClass := TMyClass.Create;
MyClass.SleepOneSecond;
MyClass.Free;
MyClass.SleepOneSecond;
同样也不会出错,但关闭程序时就出错了,如果是这样:
MyClass := TMyClass.Create;
MyClass.SleepOneSecond;
MyClass.Free;
MyThread := TMyThread.MyCreate(true);
MyThread.OnTerminate := ThreadTerminate;
MyThread.Resume;
MyClass.SleepOneSecond;
马上就出错。所以这个和线程类无线,应该是Delphi对于堆栈空间的释放规则,我想MyClass.Free之后,该对象在堆栈上空间还是保留 着,只是允许其他资源使用这个空间,所以接着调用下面这一句MyClass.SleepOneSecond就不会出错,当程序退出时可能对堆栈作一些清理 导致出错。而如果MyClass.Free之后即创建MyThread,大概MyClass的空间已经被MyThread使用,所以再调用 MyClass.SleepOneSecond就出错了。
|
|