chengxincheng... / 学习 / 高考二轮复习:数学复习的“二八四三”原则

0 0

   

高考二轮复习:数学复习的“二八四三”原则

2011-02-13  chengxinc...
2011-02-13 13:11:17 原文地址: http://blog.sina.com.cn/u/4bdc25e50100rf4u [查看原文]

【数学】高考二轮复习:数学复习的“二八四三”原则 

 
考生进入到关键的第二轮复习,对于第二轮复习来说,要达到三个目的:一是从全面基础复习转入重点复习,对各重点、难点进行提炼和掌握;二是将第一轮复习过的基础知识运用到实战考题中去,将已经掌握的知识转化为实际解题能力;三是要把握高考各题型的特点和规律,掌握解题方法,初步形成应试技巧。那么如何进行科学而有效的教学呢?

  一、大处着眼,细心领会两个成功公式

  1.科学巨匠爱因斯坦的著名公式是V=X+Y+Z(V-成功;X-刻苦的精神;Y-科学的方法;Z-少说废话)。

  2."四轮学习方略"中,成功=目标+计划+方法+行动。

  学习好数学要有刻苦拼搏的精神加科学的方法;要有明确的奋斗目标加上切实可行的计划和措施方法,要天天见行动,苦干实干抓落实。要站在整体的高度,重新认识自己所学,总体把握所学的数学知识和方法及应用。

  学校的老师和课外班的冲刺有周密的复习计划,你要与老师紧密配合。须知:围着老师转转得好,抛开老师转有自己的一套方案的学生,高考才能成为佼佼者。

  二、做到对知识和能力要求心中有数,自身优势和不足心中有数

  1.高考主干知识八大块:

  ①函数;②数列;③平面向量;④不等式(解与证);⑤解析几何;⑥立体几何;⑦概率﹑统计;⑧导数及应用。

  要做到块块清楚,不足之处如何弥补有招法,并能自觉建立起知识之间的有机联系,函数是其中最核心的主干知识。

  2.掌握四大数学思想方法。

  明确驾驭数学知识的理性思维方法,其集中体现在四大数学思想方法上。

  四大数学思想方法是:①函数与方程的思想②数型结合思想③分类讨论思想④化归或转化的思想

  3.学习好数学要抓住"四个三"

  ①内容上要充分领悟三个方面:理论、方法、思维;

  ②解题上要抓好三个字:数,式,形;

  ③阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言);

  ④学习中要驾驭好三条线:知识(结构)是明线(要清晰);方法(能力)是暗线(要领悟、要提炼);思维(训练)是主线(思维能力是数学诸能力的核心,创造性的思维能力是最强大的创新动力,是检验自己大脑潜能开发好坏的试金石。)

  著名数学家华罗庚先生说:"数学是一个原则,无数内容,一种方法,到处可用"。华罗庚先生还一再倡导读书要把书读得"由薄到厚",再"由厚到薄"。如果说我们从小学到中学学习12年数学的过程是"由薄到厚"的过程,那么高考复习的过程应该是深刻领会数学的内容、意义和方法,认真梳理、归纳、探究、总结、提炼,把握规律、灵活运用,把数学学习变得"由厚变薄"的过程,变成数学成为我们培养科学精神,掌握科学方法的最有效的工具,成为自己做高素质现代人的重要武器。那时,做高考数学题就会得心应手。

  三、光阴似箭,要争分夺秒

  三个多月时间很短,但对考生来讲犹如万里长征。要有艰辛的思想准备,很多成功考生的经验告诉我们,"信心和毅力比什么都重要"。那些肯于用自己的脑袋学习,既有刻苦精神,又讲求科学方法的同学,在学习的道路上一定会有长足的进步。

 

【数学】期末分科提分技巧:数学高分策略

 

    所谓工欲善其事必先利其器,知己知彼方能百战百胜。考试亦如是。数学考试第一要明白考什么,才能有所准备。第二要充分发挥自身的能力,才能掌控全局。

    所以我们要先了解数学考察的方向和大致内容。

一、近年高考数学命题的中心是数学思想方法,考试命题的四个基本点

       1.在基础中考能力,这主要体现在选择题和填空题。

       2.在综合中考能力,主要体现在后三道大题。

     3.在应用中考能力,在选择填空中,会出现一、二道大众数学的题目,在大题中有一道应用题(一般为概率应用题)。

     4.在新型题中考能力。尤其是新课改地区,理科命题表面上看起来更加简单,并且做题的时候会发现计算量没有以往的题型大,但是多以创新题为主。

  这“四考能力”,围绕的中心就是考查数学思想方法。

二、题型特点

  1.选择题

  (1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强。试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,绝不标新立异。

  (2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容。在高考的数学选择题中,定量型的试题所占的比重很大。而且,许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴涵了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

  (3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在。绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力,思辨性的要求充满题目的字里行间。

  (4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它辨证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是:几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

  (5)解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

  2.填空题

  填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项。因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些,长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的结构,往往是在一个正确的命题或断言中,抽去其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活。在对题目的阅读理解上,较之选择题,有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。

  填空题的考点少,目标集中,否则,试题的区分度差,其考试信度和效度都难以得到保证。

  这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因。有的可能是一窍不通,入手就错了,有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管它们的水平存在很大的差异。

  3.解答题

  解答题与填空题比较,同属提供型的试题,但也有本质的区别。首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明。填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括和准确。其次,试题内涵,解答题比起填空题要丰富得多。解答题的考点相对较多,综合性强,难度较高。解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况评定分数,用以反映其差别,因而解答题命题的自由度,较之填空题大得多。

  三、高考试卷的深层结构

  根据题型特点,高考试卷的结构就十分明确了,我们将其分成三段:

 

 

第一段

第二段

第三段

试题形式

选择、填空

解答题前三题

解答题后三题

能力要求

考察综合思维能力

考察理解、分析应用能力

需要具备更多思维

难度

基础(最后一题稍难)

中等

难(第一问难度中等)

 

    

 四、如何获取高分

    由于,基础中考能力,所以要注重解题的快法和巧法,能在40分钟左右,完成全部的选择填空题,这是夺取高分的关键。第二段是解答题的前三题,分值为30多分。这样前两个阶段的总分在110多分左右。第三段是最后“三难”题,分值不到40分。“三难”题并不全难,难点的分值只有12分到18分,平均每道题只有4分到6分。首先,应在“三难”题中夺得12分到20分,剩下最难的步骤分在努力争取。这是根据试卷的深层结构做出的最佳解题策略。

   所以,要重视选择填空题、确保前三题。在备考前一定要首先训练这类题型。这是与其他同学拉开分数与否的关键部分。但是只做选择,填空和前三道大题是不够全面的。因为,后“三难”题中的容易部分比前面的基础部分还要容易,所以我们应该志在必得。在复习的时候,根据自己的情况,如果基础较好那首先争取选择,填空前三道大题得满分。然后,再提高解答“三难”题的能力,争取“三难”题得分20分到30分。这样,你的总分就可以超过130分,向145分冲刺。

 

 

 

第一段

第二段

第三段

最佳完成时限

40分钟

30分钟

50分钟

目标得分率

90%

90%

50%

 

 

 

 

 

 

  所以最理想的提分计划是:
 五、从现在做起

  在平时当中一定要求自己选择填空一分钟一道题。用数学思想方法高速解答选择填空题。

  注意不要傻算傻解,要学会巧算和巧解。选择填空和前3道解答题都是数学基础分。后3题不是只做第一问的问题,而应该猜想评分标准,按步骤由前向后争取高分。

    应该用猪八戒拱地的精神对付难题。由前边向后边拱,往往能先拱到4分,再往前拱能拱到8分一直到10分,最后剩下2分、4分得不到就算了。因为后边属于难点的分值,需要天才。

  六、考前复习顺序

    首先狠抓选择题。选择题是一种非常容易得分也非常容易丢分的题型。又出题灵活,而考生多年的习惯来看,习惯于研究透彻,一定要挂靠“标准解答”才能放心,导致小题大做。解答选择题的时候显得较为僵化死板,导致做题时间较长,并且害怕出错。在考试时往往因为选择题而显得考试时间很紧。

    在做选择题的时候,一定要讲究技巧,避免“小题大做”,在平时解答过程中,应当灵活思考,而不要一味的傻做题。选择题命题是有一定标准的,基本是以“考察思维”为主要目的,而不是考察学生计算能力。因此平时重点训练选择题。

   选择题是属于思路开拓的题型,只要求选对,不讲究中间步骤。所以我们要在平时的时候以思考分析为主,本着“选项也是条件之一”的态度去做题,充分挖掘选择题的解答途径,从而保证选择题做的又快又对。

   其次是解答题前三道类型题。这类题往往考察深度不是特别难,基本上只要具备一些分析能力,顺着题目条件列式,或按照题意设未知数后列式,基本上都能完全拿下。这类题步骤简洁直观,而且问题的起点和终点比较显而易见,考生只需一定的解题思维即可。因此这类题的分数一定要拿到手。

   再次是填空题。填空题也较为灵活,考法多样,并无固定的形式,但是往往计算量不大,也具备一定的思维开拓空间,有多种思考方式。知识的考查上多以理解衍生应用为主,有一些难度,但是基本上中等生都可以做的出来。日常做题训练的时候一定要注意时间掌控是思维掌握上。

   最后才是难题。如果时间很紧,不建议特别花费时间去练习,只需注意难题的前面2个步骤即可。

  七、训练重点

    1、数学基础知识理解

    不要片面的去死记硬背,弄清公式、定理、推论的整个过程和原理。利用做题的时候思考课本。

    2、数学思维训练

    数学多以考察逻辑推理、分析、数形结合、平面、空间思维能力为主,平时做题时要注重思考问题的起点,思考问题解答步骤的转换原理,要善于总结题目中什么条件是可以利用的,哪些未知条件设置未知数是有利的,怎样列式才可以进行到下一步骤。

    通过这两个方面的练习,就能大幅提高数学成绩。未来的几天内,玖久专家将会针对各个学科陆续发布备考文章,希望给大家带来一定的参考价值。

【数学】高考二轮复习:数学复习的“二八四三”原则 

 
考生进入到关键的第二轮复习,对于第二轮复习来说,要达到三个目的:一是从全面基础复习转入重点复习,对各重点、难点进行提炼和掌握;二是将第一轮复习过的基础知识运用到实战考题中去,将已经掌握的知识转化为实际解题能力;三是要把握高考各题型的特点和规律,掌握解题方法,初步形成应试技巧。那么如何进行科学而有效的教学呢?

  一、大处着眼,细心领会两个成功公式

  1.科学巨匠爱因斯坦的著名公式是V=X+Y+Z(V-成功;X-刻苦的精神;Y-科学的方法;Z-少说废话)。

  2."四轮学习方略"中,成功=目标+计划+方法+行动。

  学习好数学要有刻苦拼搏的精神加科学的方法;要有明确的奋斗目标加上切实可行的计划和措施方法,要天天见行动,苦干实干抓落实。要站在整体的高度,重新认识自己所学,总体把握所学的数学知识和方法及应用。

  学校的老师和课外班的冲刺有周密的复习计划,你要与老师紧密配合。须知:围着老师转转得好,抛开老师转有自己的一套方案的学生,高考才能成为佼佼者。

  二、做到对知识和能力要求心中有数,自身优势和不足心中有数

  1.高考主干知识八大块:

  ①函数;②数列;③平面向量;④不等式(解与证);⑤解析几何;⑥立体几何;⑦概率﹑统计;⑧导数及应用。

  要做到块块清楚,不足之处如何弥补有招法,并能自觉建立起知识之间的有机联系,函数是其中最核心的主干知识。

  2.掌握四大数学思想方法。

  明确驾驭数学知识的理性思维方法,其集中体现在四大数学思想方法上。

  四大数学思想方法是:①函数与方程的思想②数型结合思想③分类讨论思想④化归或转化的思想

  3.学习好数学要抓住"四个三"

  ①内容上要充分领悟三个方面:理论、方法、思维;

  ②解题上要抓好三个字:数,式,形;

  ③阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言);

  ④学习中要驾驭好三条线:知识(结构)是明线(要清晰);方法(能力)是暗线(要领悟、要提炼);思维(训练)是主线(思维能力是数学诸能力的核心,创造性的思维能力是最强大的创新动力,是检验自己大脑潜能开发好坏的试金石。)

  著名数学家华罗庚先生说:"数学是一个原则,无数内容,一种方法,到处可用"。华罗庚先生还一再倡导读书要把书读得"由薄到厚",再"由厚到薄"。如果说我们从小学到中学学习12年数学的过程是"由薄到厚"的过程,那么高考复习的过程应该是深刻领会数学的内容、意义和方法,认真梳理、归纳、探究、总结、提炼,把握规律、灵活运用,把数学学习变得"由厚变薄"的过程,变成数学成为我们培养科学精神,掌握科学方法的最有效的工具,成为自己做高素质现代人的重要武器。那时,做高考数学题就会得心应手。

  三、光阴似箭,要争分夺秒

  三个多月时间很短,但对考生来讲犹如万里长征。要有艰辛的思想准备,很多成功考生的经验告诉我们,"信心和毅力比什么都重要"。那些肯于用自己的脑袋学习,既有刻苦精神,又讲求科学方法的同学,在学习的道路上一定会有长足的进步。

 

【数学】期末分科提分技巧:数学高分策略

 

    所谓工欲善其事必先利其器,知己知彼方能百战百胜。考试亦如是。数学考试第一要明白考什么,才能有所准备。第二要充分发挥自身的能力,才能掌控全局。

    所以我们要先了解数学考察的方向和大致内容。

一、近年高考数学命题的中心是数学思想方法,考试命题的四个基本点

       1.在基础中考能力,这主要体现在选择题和填空题。

       2.在综合中考能力,主要体现在后三道大题。

     3.在应用中考能力,在选择填空中,会出现一、二道大众数学的题目,在大题中有一道应用题(一般为概率应用题)。

     4.在新型题中考能力。尤其是新课改地区,理科命题表面上看起来更加简单,并且做题的时候会发现计算量没有以往的题型大,但是多以创新题为主。

  这“四考能力”,围绕的中心就是考查数学思想方法。

二、题型特点

  1.选择题

  (1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强。试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,绝不标新立异。

  (2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容。在高考的数学选择题中,定量型的试题所占的比重很大。而且,许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴涵了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

  (3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在。绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力,思辨性的要求充满题目的字里行间。

  (4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它辨证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是:几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

  (5)解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

  2.填空题

  填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项。因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些,长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的结构,往往是在一个正确的命题或断言中,抽去其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活。在对题目的阅读理解上,较之选择题,有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。

  填空题的考点少,目标集中,否则,试题的区分度差,其考试信度和效度都难以得到保证。

  这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因。有的可能是一窍不通,入手就错了,有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管它们的水平存在很大的差异。

  3.解答题

  解答题与填空题比较,同属提供型的试题,但也有本质的区别。首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明。填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括和准确。其次,试题内涵,解答题比起填空题要丰富得多。解答题的考点相对较多,综合性强,难度较高。解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况评定分数,用以反映其差别,因而解答题命题的自由度,较之填空题大得多。

  三、高考试卷的深层结构

  根据题型特点,高考试卷的结构就十分明确了,我们将其分成三段:

 

 

第一段

第二段

第三段

试题形式

选择、填空

解答题前三题

解答题后三题

能力要求

考察综合思维能力

考察理解、分析应用能力

需要具备更多思维

难度

基础(最后一题稍难)

中等

难(第一问难度中等)

 

    

 四、如何获取高分

    由于,基础中考能力,所以要注重解题的快法和巧法,能在40分钟左右,完成全部的选择填空题,这是夺取高分的关键。第二段是解答题的前三题,分值为30多分。这样前两个阶段的总分在110多分左右。第三段是最后“三难”题,分值不到40分。“三难”题并不全难,难点的分值只有12分到18分,平均每道题只有4分到6分。首先,应在“三难”题中夺得12分到20分,剩下最难的步骤分在努力争取。这是根据试卷的深层结构做出的最佳解题策略。

   所以,要重视选择填空题、确保前三题。在备考前一定要首先训练这类题型。这是与其他同学拉开分数与否的关键部分。但是只做选择,填空和前三道大题是不够全面的。因为,后“三难”题中的容易部分比前面的基础部分还要容易,所以我们应该志在必得。在复习的时候,根据自己的情况,如果基础较好那首先争取选择,填空前三道大题得满分。然后,再提高解答“三难”题的能力,争取“三难”题得分20分到30分。这样,你的总分就可以超过130分,向145分冲刺。

 

 

 

第一段

第二段

第三段

最佳完成时限

40分钟

30分钟

50分钟

目标得分率

90%

90%

50%

 

 

 

 

 

 

  所以最理想的提分计划是:
 五、从现在做起

  在平时当中一定要求自己选择填空一分钟一道题。用数学思想方法高速解答选择填空题。

  注意不要傻算傻解,要学会巧算和巧解。选择填空和前3道解答题都是数学基础分。后3题不是只做第一问的问题,而应该猜想评分标准,按步骤由前向后争取高分。

    应该用猪八戒拱地的精神对付难题。由前边向后边拱,往往能先拱到4分,再往前拱能拱到8分一直到10分,最后剩下2分、4分得不到就算了。因为后边属于难点的分值,需要天才。

  六、考前复习顺序

    首先狠抓选择题。选择题是一种非常容易得分也非常容易丢分的题型。又出题灵活,而考生多年的习惯来看,习惯于研究透彻,一定要挂靠“标准解答”才能放心,导致小题大做。解答选择题的时候显得较为僵化死板,导致做题时间较长,并且害怕出错。在考试时往往因为选择题而显得考试时间很紧。

    在做选择题的时候,一定要讲究技巧,避免“小题大做”,在平时解答过程中,应当灵活思考,而不要一味的傻做题。选择题命题是有一定标准的,基本是以“考察思维”为主要目的,而不是考察学生计算能力。因此平时重点训练选择题。

   选择题是属于思路开拓的题型,只要求选对,不讲究中间步骤。所以我们要在平时的时候以思考分析为主,本着“选项也是条件之一”的态度去做题,充分挖掘选择题的解答途径,从而保证选择题做的又快又对。

   其次是解答题前三道类型题。这类题往往考察深度不是特别难,基本上只要具备一些分析能力,顺着题目条件列式,或按照题意设未知数后列式,基本上都能完全拿下。这类题步骤简洁直观,而且问题的起点和终点比较显而易见,考生只需一定的解题思维即可。因此这类题的分数一定要拿到手。

   再次是填空题。填空题也较为灵活,考法多样,并无固定的形式,但是往往计算量不大,也具备一定的思维开拓空间,有多种思考方式。知识的考查上多以理解衍生应用为主,有一些难度,但是基本上中等生都可以做的出来。日常做题训练的时候一定要注意时间掌控是思维掌握上。

   最后才是难题。如果时间很紧,不建议特别花费时间去练习,只需注意难题的前面2个步骤即可。

  七、训练重点

    1、数学基础知识理解

    不要片面的去死记硬背,弄清公式、定理、推论的整个过程和原理。利用做题的时候思考课本。

    2、数学思维训练

    数学多以考察逻辑推理、分析、数形结合、平面、空间思维能力为主,平时做题时要注重思考问题的起点,思考问题解答步骤的转换原理,要善于总结题目中什么条件是可以利用的,哪些未知条件设置未知数是有利的,怎样列式才可以进行到下一步骤。

    通过这两个方面的练习,希望给大家带来一定的参考价值。

标签:杂谈

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。如发现有害或侵权内容,请点击这里 或 拨打24小时举报电话:4000070609 与我们联系。

    猜你喜欢

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多