分享

硬件资料与知识大全(2)

 余温365℃ 2011-03-05

 

二十二:挑战故障 硬盘故障软件()

 

笔者最开始修理硬盘时,常常是什么软件都乱用一通,结果经常搞得硬盘连原厂的DM工具甚至BIOS都不认。现在我接到要修的硬盘一定会确认两件事,一是里面的数据重不重要,二是BIOS能不能认。如果数据比硬盘值钱,我会让该用户花钱找专业人员;如果BIOS都不认该硬盘那我就没办法啦。然后再上网,找找有关型号的资料(故障原因、处理办法、原厂工具)。最后才开始动手。

  我处理的流程是:

  第一,先用原厂的工具,例如DM等先对硬盘进行“清零”、“低格”等处理。

  这样做有以下好处:一是毕竟原厂的工具更安全,二是小问题DM都可能解决,三是有些硬盘修复软件会将硬盘搞得连原厂的工具都不认,到时才想起原厂的工具就太迟了。经上面处理过后再用其它软件,硬盘修复时间会大为缩短。因为有些软件、病毒或因不正常开关机而将硬盘的某些地方标上“坏”的标志,当这些坏簇连成一片时,直接用其它软件处理,其耗时可能超出你的想象。我曾遇到过一个硬盘,有10MB左右的坏簇是连在一起的,有上万个坏簇,而HDDREGMHDD等一个小时才处理几百个,你算一算要花多长时间?DM搞过后再用其它软件修复,这个区再也见不到坏簇,整个硬盘才几百个,修复起来快多了。

  第二,用修复软件。HDDREGMHDDFB都很好找,也很好用。

  HDDREG安装较烦,我用131版,是要安装在硬盘上。先从一些网站下载,安装时会让你再到官方网站下载一个新的安装程序,安装完后再制作一个软盘,然后就可以用它修复硬盘了。最好多复制几个软盘,因为软盘会经常读写,如果坏簇多、软盘读写次数会大大增加,很容易将软盘搞坏。该软件可以在Windows以及DOS下使用,你还可以决定从第几MB开始处理,不过不能决定在哪里结束。

MHDDFB直接解压就可以用,但只可以在DOS下使用。你也可以将它俩COPY到软盘,总共才几百KB。在使用方面,FBHDDREG都很容易使用,启动它们就会将电脑中的硬盘列出,你只要选定所要修的硬盘再回车它就自动完成。FB到结束时会自动将你的硬盘坏道隐藏,将好的进行分区,但最多挑出4块最大的给你用,询问你是否同意,你选“Y”,就相当于Fdisk一次,但重启电脑后还要格式化才可使用。(注意:当硬盘坏道较多较分散时你的硬盘容量会损失很大,我试过直接用它维修一个2.5GB和一个4.3GB的硬盘,结果一个只有1.8GB可用,一个只有800MB可用。)

  MHDD的使用有点烦,但功能最多。启动时它会先将一些参数命令列出,然后就等你输入命令。按F2键是硬盘设定,按F4键是参数设定界面,默认全是OFF,即只扫描不修理,速度较快。你还可以设定从哪里开始从哪里结束。参数一般将REMAP(坏道映射)以及LOOP THE TEST/REPAIR(循环/修复,即修完一次再来一次,直到你叫停!)设为ON就可以了,再按F4键开始工作。中途还可以按键盘的箭头快进或后退。它工作时会有一个类似MSSCANDISK的示意图给你看,很直观,使你对该硬盘的质量可以心中有数。

  在使用这些软件前一定要先将BIOS的病毒功能、软硬盘写保护关闭。FB会损坏数据,MHDDHDDREG则只会对坏区里的数据有损。它们之间还会“打架”,这个说OK,那个又说有错。上面几个软件很难说哪个最好。软件修复硬盘所费时间都很长,三两个小时是很平常的。如果硬盘不太重要且硬盘坏道较多时,我会在夜晚开机启动软件,然后关显示器,上床睡觉,明天早上醒来就差不多了。如果舍不得硬盘响几个钟头,可以每个把小时就退出(中途退出可以按“Ctrl+Break”组合键,但未完成的就退出,下次开机操作系统会报被修的硬盘有错,进行扫描,你大可不管按X键退出),并记住位置,关机,让它休息十来分钟再从停的地方继续修复,今天干不完还可以明天接着干(但FB好像没这功能)。如用FB分区觉得不满意可用DISKGENIUSPQ等合并,但如果坏道多用DG会太烦,PQ也会报硬盘有错。如果容量损失不大,还是等FB自己弄好了。

  附:

  工作流程:

  普通硬盘:DM(清零,低格)→FB,如可用容量超过50%就完工,否则再来:DMHDDREGMHDDFBHDDREGMHDD在睡前开动,醒来“收货”。

  重要硬盘:DMHDDREGMHDDFB。用HDDREGMHDD时最好每小时退出休息一下。

硬盘常见故障及其处理方法

1.电源引起的硬盘不能正常起动

  计算机电源输出的电压分别是+5V和+12V。硬盘启动需要+12V电压和4A的电流,硬盘工作时的电流为1.1A。软盘的启动仅需+10V左右的电压和1.3A电流,而工作电流为0.5A。计算机电源的输出电压不足+12V,则硬盘就不能启动和工作。处理这类故障,就要使电源输出恢复到+12V电压。

2.主板电池电压不足引起的硬盘无法启动

  这是主板上的充电电池失效引起主机参数紊乱而产生的故障。主板上的充电电池(一般是锂电池)是当主机关机时用来保存机器时钟、日期,软盘驱动器的个数、类型,硬盘个数、类型,显示器方式,内存容量,扩展容量等系统参数的。当开机上电自检时,BIOS自动检测CMOS中的参数表,如果不匹配,则出现死机。锂电池的工作电压为+3V~+6V。如果电池电压不足+3V或电池失效,则硬盘无法被识别。

3.硬盘参数错误导致的硬盘不能启动

  硬盘参数有硬盘容量大小、磁头数、磁道数、扇区数等多种。不同厂家生产的硬盘,其参数值各不相同。如果硬盘参数值设置错误,则硬盘就启动不了。这时需要重新设置硬盘的磁头数、磁道数、扇区数等值。方法是:首先开机后待自检开始,按下DEL键,即可进入CMOS SETUP设置状态。然后,对COMS中的参数进行设置:选择STANDARD CMOS SETUP栏目中的TYPE项,填入正确的TYPE值。一般的主板都有硬盘自检测功能。进入CMOS SETUP设置菜单中,选择“IDE HDD AUTO DETECTION”即可。

4.硬盘0磁道被破坏引起的故障

  DOS操作系统放在硬盘的0磁道上 如果硬盘的0磁道物理性损坏,硬盘便不工作。

  一般采用的修复方法是:首先尽量把硬盘有用的文件、数据备份出来。由于硬盘0磁道的损坏,硬盘中的资料、文件已不能按正常备份方法备份,需用BIOS中断方法按扇区逐一备份;然后对整个硬盘做格式化,再用FDISK对硬盘重新分区,最后用formAT对硬盘作逻辑格式化,装上DOS操作系统和有关文件、数据即可。

  若用上述方法修复无效,则先用KV300杀毒盘启动、杀毒,再用A:系统盘启动,运行SCANDISK扫描C盘,若在第一簇出现一个红色的“B”,表明零磁道损坏。然后用PCTOOLS 9.0中的DE(该软件能看到各个分区在硬盘的起始点),运行PCT90目录下的DEEXE,报告现在运行在只读模式,选Op-tions菜单 Configuration,按空格去掉Read Only前面的√,保存后退出。选主菜单SelectDrive;进入后在Drive typePhysical,按空格选定,再按TTab键切换到Druves项,选中harddisk,然后选OK回车。此后回到主菜单,打开Select菜单,这时会出现Partiton Table,选中之后出现硬盘分区表信息。该分区是从硬盘的0柱面开始的,那么,将分区的Beginning Cylinder0改成1即可 保存后退出。重新启动,按Delete键进入CMOS设置,进行“IDE HDD AUTO DETECTION(也可以看到CYLS数变少)",保存后退出,此时再对硬盘重新分区,格式化,装上相应的软件即可。

 

二十三:硬盘的DOS管理结构(经典)

http://bbs./viewthread.php?tid=2916440&sid=jkLpLI

 

1.磁道,扇区,柱面和磁头数

  硬盘最基本的组成部分是由坚硬金属材料制成的涂以磁性介质的盘片,不同容量硬盘的盘片数不等。每个盘片有两面,都可记录信息。盘片被分成许多扇形的区域,每个区域叫一个扇区,每个扇区可存储128×2N次方(N0.1.2.3)字节信息。在DOS中每扇区是128×22次方=512字节,盘片表面上以盘片中心为圆心,不同半径的同心圆称为磁道。硬盘中,不同盘片相同半径的磁道所组成的圆柱称为柱面。磁道与柱面都是表示不同半径的圆,在许多场合,磁道和柱面可以互换使用,我们知道,每个磁盘有两个面,每个面都有一个磁头,习惯用磁头号来区分。扇区,磁道(或柱面)和磁头数构成了硬盘结构的基本参数,帮这些参数可以得到硬盘的容量,基计算公式为:

存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数

要点:(1)硬盘有数个盘片,每盘片两个面,每个面一个磁头

   (2)盘片被划分为多个扇形区域即扇区

   (3)同一盘片不同半径的同心圆为磁道

   (4)不同盘片相同半径构成的圆柱面即柱面

   (5)公式: 存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数

   (6)信息记录可表示为:××磁道(柱面),××磁头,××扇区

 

2.簇簇是DOS进行分配的最小单位

  当创建一个很小的文件时,如是一个字节,则它在磁盘上并不是只占一个字节的空间,而是占有整个一簇。DOS视不同的存储介质(如软盘,硬盘),不同容量的硬盘,簇的大小也不一样。簇的大小可在称为磁盘

参数块(BPB)中获取。簇的概念仅适用于数据区。

本点:(1)簇是DOS进行分配的最小单位。

   (2)不同的存储介质,不同容量的硬盘,不同的DOS版本,簇的大小也不一样。

   (3)簇的概念仅适用于数据区。

 

3.扇区编号定义:绝对扇区与DOS扇区

  由前面介绍可知,我们可以用柱面/磁头/扇区来唯一定位磁盘上每一个区域,或是说柱面/磁头/扇区与磁盘上每一个扇区有一一对应关系,通常DOS将柱面/磁头/扇区这样表示法称为绝对扇区表示法。但DOS不能直接使用绝对扇区进行磁盘上的信息管理,而是用所谓相对扇区或DOS扇区。相对扇区只是一个数字,如柱面140,磁头3,扇区4对应的相对扇区号为2757。该数字与绝对扇区柱面/磁头/扇区具有一一对应关系。当使用相对扇区编号时,DOS是从柱面0,磁头1,扇区1开始(注:柱面0,磁头0,扇区1没有DOS扇区编号,DOS下不能访问,只能调用BIOS访问),第一个DOS扇区编号为0,该磁道上剩余的扇区编号为116(设每磁道17个扇区),然后是磁头号为2,柱面为017个扇区,形成的DOS扇区号从1733。直到该柱面的所有磁头。然后再移到柱面1,磁头1,扇区1继续进行DOS扇区的编号,即按扇区号,磁头号,柱面号(磁道号)增长的顺序连续地分配DOS扇区号。

 

公式:记DH--第一个DOS扇区的磁头号

    DC--第一个DOS扇区的柱面号

    DS--第一个DOS扇区的扇区号

    NS--每磁道扇区数

    NH--磁盘总的磁头数

   则某扇区(柱面C,磁头H,扇区S)的相对扇区号RS为:

RSNH×NS×(CDC)+NS×(HDH)+(SDS

   若已知RSDCDHDSNSNH

S=(RS MOD NS)+DS

H=((RS DIV NSMOD NH)+DH

C=((RS DIV NSDIV NH)+DC

要点:(1)以柱面/磁头/扇区表示的为绝对扇区又称物理磁盘地址

   (2)单一数字表示的为相对扇区或DOS扇区,又称逻辑扇区号

   (3)相对扇区与绝对扇区的转换公式

 

4.DOS磁盘区域的划分

  格式化好的硬盘,整个磁盘按所记录数据的作用不同可分为主引导记录(MBR:Main Boot Record),Dos引导记录(DBRos Boot Record),文件分配表(FAT:File Assign Table),根目录(BD:Boot Directory)和数据区。前5个重要信息在磁盘的外磁道上,原因是外圈周长总大于内圈周长,也即外圈存储密度要小些,可伤心性高些。

 

要点:(1)整个硬盘可分为MBRDBRFATBD和数据区。

   (2MBRDBRFAT,和BD位于磁盘外道。

 

5.MBR

  MBR位于硬盘第一个物理扇区(绝对扇区)柱面0,磁头0,扇区1处。由于DOS是由柱面0,磁头1,扇区1开始,故MBR不属于DOS扇区,DOS不能直接访问。MBR中包含硬盘的主引导程序和硬盘分区表。分区表有4个分区记录区。记录区就是记录有关分区信息的一张表。它从主引导记录偏移地址01BEH处连续存放,每个分区记录区占16个字节。

分区表的格式

 

分区表项的偏移 意义  占用字节数

   00 引导指示符 1B

   01 分区引导记录的磁头号 1B

   02 分区引导记录的扇区和柱面号 2B

   04 系统指示符 1B

   05 分区结束磁头号 1B

   06 分区结束扇区和柱面号 2B

   08 分区前面的扇区数 4B

   0C 分区中总的扇区数 4B

4个分区中只能有1个活跃分区,即C盘。标志符是80H在分区表的第一个字节处。若是00H则表示非活跃分区。例如:

80 01 01 00 0B FE 3F 81 3F 00 00 00 C3 DD 1F 00

00 00 01 82 05 FE BF 0C 02 DE 1F 00 0E 90 61 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

要点:(1MBR位于硬盘第一个物理扇区柱面0,磁头0,扇区1处。不属于DOS扇区,

   (2)主引导记录分为硬盘的主引导程序和硬盘分区表。

 

6.DBR

  DBR位于柱面0,磁头1,扇区1,即逻辑扇区0DBR分为两部分:DOS引导程序和BPBBIOS参数块)。其中DOS引导程序完成DOS系统文件(IO.SYSMSDOS.SYS)的定位与装载,而BPB用来描述本DOS分区的磁盘信息,BPB位于DBR偏移0BH处,共13字节。

 

  它包含逻辑格式化时使用的参数,可供DOS计算磁盘上的文件分配表,目录区和数据区的起始地址,BPB之后三个字提供物理格式化(低格)时采用的一些参数。引导程序或设备驱动程序根据这些信息将磁盘逻辑地址(DOS扇区号)转换成物理地址(绝对扇区号)。BPB格式

序号 偏移地址 意义

1 03H0AH OEM

2 0BH0CH 每扇区字节数

3 0DH 每簇扇区数

4 0EH0FH 保留扇区数

5 10H FAT备份数

6 11H12H 根目录项数

7 13H14H 磁盘总扇区数

8 15H 描述介质

9 16H17H FAT扇区数

10 18H19H 每磁道扇区数

11 1AH1BH 磁头数

12 1CH1FH 特殊隐含扇区数

13 20H23H 总扇区数

14 24H25H 物理驱动器数

15 26H 扩展引导签证

16 27H2AH 卷系列号

17 2BH35H 卷标号

18 36H3DH 文件系统号

DOS引导记录公式:

文件分配表≡保留扇区数

根目录≡保留扇区数+FAT的个数×每个FAT的扇区数

数据区≡根目录逻辑扇区号+(32×根目录中目录项数+(每扇区字节数-1))DIV每扇区字节数

绝对扇区号≡逻辑扇区号+隐含扇区数

扇区号≡(绝对扇区号MOD每磁道扇区数)+1

磁头号≡(绝对扇区号DIV每磁道扇区数)MOD磁头数

磁道号≡(绝对扇区号DIV每磁道扇区数)DIV磁头数

要点:(1DBR位于柱面0,磁头1,扇区1,其逻辑扇区号为0

   (2DBR包含DOS引导程序和BPB

   (3BPB十分重要,由此可算出逻辑地址与物理地址。

 

7.文件分配表

  文件分配表是DOS文件组织结构的主要组成部分。我们知道DOS进行分配的最基本单位是簇。文件分配表是反映硬盘上所有簇的使用情况,通过查文件分配表可以得知任一簇的使用情况。DOS在给一个文件分配空间时总先扫描FAT,找到第一个可用簇,将该空间分配给文件,并将该簇的簇号填到目录的相应段内。即形成了簇号链。FAT就是记录文件簇号的一张表。

 

  FAT的头两个域为保留域,对FAT12来说是3个字节,FAT来说是4个字节。其中头一个字节是用来描述介质的,其余字节为FFH。介质格式与BPB相同。

第一个字节的8位意义:

7 6 5 4 3 2 1

└─────- │┌0非双面

1 └┤

1双面

│┌0不是8扇区

└┤

18扇区

│┌0不是可换的

└┤

1是可换的

FAT结构含义

FAT12 FAT16 意义

000H 0000H 可用

FF0HFF6H FFF0HFFF6H 保留

FF7H FFF7H

FF8HFFFH FFF8HFFFFH 文件最后一个簇

×××H ××××H 文件下一个簇

对于FAT16,簇号×2作偏移地址,从FAT中取出一字即为FAT中的域。

逻辑扇区号=数据区起始逻辑扇区号+(簇号-2)×每簇扇区数

簇号=(逻辑扇区号-数据区起始逻辑扇区号)DIV每簇扇区数+2

要点:(1FAT反映硬盘上所有簇的使用情况,它记录了文件在硬盘中具体位置(簇)。

   (2)文件第一个簇号(在目录表中)和FAT的该文件的簇号串起来形成文件的簇号链,恢复被破坏的文件就是根

据这条链。

   (3)由簇号可算逻辑扇区号,反之,由逻辑扇区号也可以算出簇号,公式如上。

   (4FAT位于DBR之后,其DOS扇区号从1开始。

 

8.文件目录

  文件目录是DOS文件组织结构的又一重要组成部分。文件目录分为两类:根目录,子目录。根目录有一个,子目录可以有多个。子目录下还可以有子目录,从而形成树状的文件目录结构。子目录其实是一种特殊的文件,DOS为目录项分配32字节。目录项分为三类:文件,子目录(其内容是许多目录项),卷标(只能在根目录,只有一个。目录项中有文件(或子目录,或卷标)的名字,扩展名,属性,生成或最后修改日期,时间,开始簇号,及文件大小。

 

目录项的格式

 

字节偏移 意义 占字节数

00H 文件名 8B

08H 扩展名 3B

0BH 文件属性 1B

0CH 保留 10B

16H 时间 2B

18H 日期 2B

1AH 开始簇号 2B

1CH 文件长度 4B

目录项文件名区域中第一个字节还有特殊的意义:00H代表未使用

05H代表实际名为E5H

EBH代表此文件已被删除

目录项属性区域的这个字节各个位的意义如下: 7 6 5 4 3 2 1 0

                      未 修 修 子 卷 系 隐 只

                      用 改 改 目 标 统 藏 读

                        标 标 录   属 属 属

                        志 志     性 性 性

注意:WINDOWS的长文件名使用了上表中所说的保留这片区域。

要点:(1)文件目录是记录所有文件,子目录名,扩展名属性,建立或删除最后修改日期。文件开始簇号及文件长度的一张

      登记表.

   (2DOSDIR列出的内容训是根据文件目录表得到的。

   (3)文件起始簇号填在文件目录中,其余簇都填在FAT中上一簇的位置上。 

 

二十四:硬盘数据恢复实例全解(经典)

 

 

难道在硬盘数据由于各种原因被破坏后,我们就只能自怨自艾?

  这篇实例全解,就是希望在不幸的情况发生的时候,读者能够快速找到对应的解决方案,不至于让自己辛勤劳动成果白费。

  当然,我们最大的期望还是——你永远不要用到下面的方法!因为再完备的事后解决方案,也不能保证所有数据的完好无缺。而要真正做到 万无一失,更重要的工作还在于防患于未然。

 

  文件误删除

 

  一、症状

  这可能是最简单同时也是最常见的数据损坏,直接的表述就是一般删除文件后清空了回收站,或按住Shift键删除,要不然就是在"回收站" "属性"中勾选了"删除时不将文件移入回收站,而是彻底删除"

 

  二、解决方案

  既然是最常见的数据损坏,当然也就是最容易恢复的,下面就根据不同的操作系统给出相应的解决方案。

 

  1.Win9x/Me下的解决方案

  也就是FAT16/32分区下的文件误删除恢复,这应该是大部分恢复类软件的基本功能;而我们拿来作例子的软件Recover4all,所提供的功能 仅为在Win9x/Me下恢复被误删除的文件--其实很多东西并不是一味求大求全就好,够用已足够,简单就是美。

 

  废话少说,立即下载Recover4all,这是一个自解压文件,你可以把其中的文件解压到软盘或硬盘的一 个目录下(默认就是解压到软盘)。运行其中的rec4all.exe,会看见一个注册窗口,点击其中"To star the progam click"的按钮就能够进行 试用(未注册版本只能恢复10KB以内的文件)。程序的主窗口下图所示,这是一个类似于"资源管理器"的窗口;你可以通过点击主菜单下方的 盘符按钮来扫描相应分区下的被删除文件,然后在右边的窗口中选择需要恢复的文件,再点击主菜单下方的"Recover"按钮,并在新弹出的窗口 中选择恢复文件的存放位置即可--Win9x/Me下的误删除文件恢复就这么简单。

 

 2.WinNT/2000下的解决方案

  换种说法,也就是如何恢复在NTFS分区下被误删除的文件。对于这种相对简单的需求,File Scavenger(立即下载“File Scavenger”)完全就可以胜任。当然,File Scavenger是很 具有针对性的--它只能在WinNT/2000系统下使用(同时必须以Administrator用户登录系统),而且只对NTFS格式的分区有效。不过它支持压缩 过的NTFS分区或文件夹中文件的恢复,并对格式化过的NTFS分区中的文件也有效(注意:File Scavenger只可以对格式化过的分区中的文件进行 恢复,并不能恢复整个被格式化过的分区)。

 

  File Scavenger目前有两种版本:硬盘安装版和软盘版。硬盘版的安装和 一般软件类似,唯一需要注意的是--使用File Scavenger恢复文件的最安全方法就是在文件已经被删除之后安装File Scavenger(当然你不要 将软件安装在删除文件所在的分区)。因为File Scavenger的功能比较单一,其执行文件加上所需的库文件一张1.44MB的软盘也可以装下,所 以软盘版也许是大家使用得比较多的(你要把软盘版直接放在硬盘的一个目录下也照常可以使用)。下面的实例,我们就用软盘版来说明。

 

  一个非重要的文件Veryimportant.txt被误删除且清空了回收站;还好,你看过本篇"实例分析"而且也在软盘或硬盘上准备好了File ScavengerOK,现在你运行其中的filescav.exe,你将会看见如下图的窗口。注意:其中的"搜索条件"可有多种格式(例如,*.doc* data*.txt等),根据你自己的需要填写最方便查找的;Exhaustive Sear复选框选择后会让你指定搜寻分区的簇大小以及搜索簇的范围,而指 定之后File Scavenger会搜寻并显示所有存在的文件名称,不管是被删除的还是没有,因此没有特殊需要还是不用为好;在搜索结果窗口中可 以通过点击"Filename""Size""Modified"等来为搜索结果排序,以方便寻找。

  现在我们已经找到了Veryimportant.txt,选择它并点击"Recover"按钮,如果文件能够被恢复,你就可以在先前指定的恢复文件存储路径中 找到它(如果你是第一次使用File Scavenger,之前还会有一个窗口提醒你注册,如果不注册,你将只能恢复4KB以内的文件)。现在,还有什 么可担心的?

  不可恢复的情况

  如果文件在删除之后,其存储的磁盘空间进行过写操作,那在通常情况下恢复的几率为0。因此,误删除文件可以恢复的重要前提就是不要 在删除文件所在的分区进行写操作

 

  三、工具软件

  这个软件包含在Norton Utility系列工具中,功能十分强大,可以恢复分区记录、FAT表,需要注意的是它对硬盘的操作不是只读的,因此 你需要每一步都做好Undo文件,这样即使误操作也可以恢复,Norton Disk Doctor配合DiskEdit在分区表不能恢复时也可以恢复部分文件,可 Norton Disk Doctor不支持NTFS分区,这不能不说是它的一大遗憾之处……

  最专业的数据恢复公司出的软件,当然很有专业风范,EasyRecovery支持的文件系统格式很多FATNTFS都支持,并且有专门的For Novell 版本。EasyRecovery对于分区破坏和硬盘意外被格式化都可安全的恢复,你所要做的就是将数据损坏硬盘挂到另外一台电脑上,尽情恢复就是 了,不过EasyRecovery对于中文的文件名和目录名效果不是很好(一些乱码,但文章内容绝对是正确的)。

  由出品PartitionMagicPowerQuest公司所出的,硬盘资料复原工具。它是一套恢复硬盘因病毒感染,意外格式化等因素所导致的资料损失 工具软件,能将已删除的文件资料找出并恢复,也能找出已重新格式化的硬盘、被破坏的FAT分配表、启动扇区等等,几乎能找出及发现任何在 硬盘上的资料(支持FAT16FAT32及长文件名)。恢复回来的资料能选择在原来所在位置恢复或保存到其它可写入资料的硬盘,也提供了自动 备份目录、文件和系统配置文件的功能,能在任何时间恢复)。要注意的一点是,尽量用一个很大的硬盘来装恢复的数据(最好挂双硬盘), 如果目标盘的容量小于源盘的容量,下场会很惨!不过Lost&Found却是基于DOS的一种软件,这在"瘟到死"横行的今天,市场只有越来越小

 

  四、实战操作

  我的硬盘为IBM 9.44GB硬盘,分区情况如下:

 

  一天被朋友用Win2000自带的磁盘管理工具将所有分区完全删除,并且删除之后没有进行任何操作。恢复工具的选择上,因为四个分区三个 FAT16,一个是NTFS,我决定首先用Norton Disk Doctor恢复三个FAT16分区,不过由于Norton Disk Doctor不支持NTFS,故采用支持NTFS EasyRecovery

 

  1.FAT分区的恢复

  打开Norton Utility中的Norton Disk DoctorNDD会自动为你检测硬盘分区情况,当检测到测盘2的分区表有问题时,跳出一个提示窗口, 询问是否在访问磁盘2的过程中遇到麻烦,按下"Yes"按钮。

  接下来的弹出窗口中提示Norton Disk Doctor没有在磁盘2上发现任何DOS分区,是否要Norton Disk Doctor搜索并重建DOS分区,当然选 "Yes"(是)。

  很快又一个"Partition Search"(分区搜索窗口)弹出,提示找到一个2039MBDOS分区,是不是要恢复,当然是"Yes"

  在接下来的询问是否搜索更多的DOS分区窗口中选择"Yes",又发现一个DOS分区,一直回答"Yes"直到Norton Disk Doctor找到3DOS分区, 由于NTFS分区Norton Disk Doctor不支持,所以在找到3个分区后,如果磁盘搜索程序询问你是否搜索更多的DOS分区时,选择"No",重新启动 计算机,发现丢失的三个FAT分区完全恢复,并且WinMe仍可正常启动。

 

  2.NTFS的恢复

  NTFS分区的恢复我们是使用EasyRecovery来实现的,打开EasyRecovery,按下"Next"(下一步)进入磁盘选择窗口,选中我的IBM-DTTA- 351010下的"Unknown File System Type4.43GB",按下"Next"

  在接下来的窗口中你可以设置该分区的起始扇区号(Start Sector)和中止扇区号(End Sector),不用管它,按下"Next"继续。

 

  现在到了选择分区文件格式窗口,在"File system Type"的下拉式菜单中选择"NTFS"(我这里的分区格式是NTFS,你应该选择和你的条件相 符的,如果实在不知道分区格式也可以选择"RAW"进行全盘搜索),搜索方式选择"Typical Scan"(特定搜索)就可以了,按下"Next"/"Next"

  硬盘一阵轰隆隆的狂响之后,搜索结果终于出现在我们面前,将你需要恢复的文件前面打上钩,然后在下边的Destination中输入你恢复文 件的目的路径,按下"Next"恢复吧……

 

  3.分区格式化的恢复

  分区格式化之后,只要其中没有写入任何文件,理论上我们仍然可以恢复。工具吗?当然还是EasyRecovery了,不过需要说明一点的是: 于格式化程序将根目录完全破坏所以用EasyRecovery恢复以后,你会看到一些DIR0DIR1等目录(不过目录中的文件名还是完整的)!

  启动故障

  我等电脑用家,如果某一天硬盘不能启动,轻则使你陷入手忙脚乱之中,重则丢失重要资料,我们这里从硬盘启动的整个历程来为你详解每 个阶段可能出现的问题以及应该采取的措施,解决你的手足无措之苦……

  一、出错信息:"Non System disk or disk error, Replace and strike any key when ready",用软盘启动后,在A:>后键入C:,屏幕 显示:"Invalid drive specification",系统不认硬盘。

  故障分析:造成该故障的原因一般是CMOS中的硬盘设置参数丢失或硬盘类型设置错误造成的。

  解决方案:进入CMOS,检查硬盘设置参数是否丢失或硬盘类型设置是否错误,如果确是该种故障,只需将硬盘设置参数恢复或修改过来即可 。具体修改方式:进入CMOS设置,选择"HDD AUTO DETECTION"(硬盘自动检测)选项,即可自动检测出硬盘类型参数(由不同的BIOS而定,有的 BIOS中可能是"IDE AUTO DETECTION",只需针对自己的选项修改就是了)。若无此项,并且也没有备份的CMOS,你就只好打开机箱,查看硬盘 表面标签上的硬盘参数,然后依样修改了。

二、出错信息:开机后,屏幕上显示:"Invalid partition table",硬盘不能启动,若从软盘启动则认C盘。

  故障分析:造成该故障的原因一般是硬盘主引导记录中的分区表有错误,当指定了多个活动分区(只能有一个活动分区)或病毒占用了分区表 时,将有上述提示。

  主引导扇区位于0磁头0柱面1扇区,由Fdisk.exe对硬盘分区时生成。主引导扇区包括主引导程序(MBR)、分区表(DPT)和结束标志55AA 部分,共占一个扇区。主引导程序中含有检查硬盘分区表的程序代码和出错信息、出错处理等内容。当硬盘启动时,主引导程序将检查分区表 中的活动标志。若某个分区为可活动分区(Active),则有分区标志80H,否则为00H,并且对于DOS等操作系统只能有一个分区为活动分区,若分 区表中含有多个活动标志时,主引导程序会给出"Invalid partition table"的错误提示。

  解决方案:解决方法很多:最简单的就是使用NDD来修复(由于不能进入Windows,我们当然使用的是DOS版本的NDD),它将自动为你检查分区 表错误,并加以修复。需要注意的是,因为分区表破坏有很多种方式,因此我们需要在对分区表改动之前首先备份主引导扇区,这样即使恢复 错误,我们也能返回错误之前的位置重新再来。 

  三、出错信息:系统自检正常,可自检之后只显示一行"Operation system not found"出错信息就不再引导,但是用软盘启动计算机后,可 以看到硬盘上的任何内容。

  故障分析:这种问题一般是由于MBR在检查活动分区的时候出现的,和我们上一问题的出错比较类似,所不同的是一个是分区表中活动分区标 志过多,而本例中是没有活动分区造成的。

  解决方案:用软盘启动计算机,然后执行分区程序Fdisk.exe,按下"2"来选择活动分区(Set active partition)。

  在接下来的选择活动分区窗口中,选择你自己想要启动的分区,我这里选择的是"1"--Primary DOS(主DOS分区),对应于我的DOS/Windows 下的C:盘。

  四、出错信息:主机加点自检,自检完毕,硬盘指示灯闪亮,屏幕出现:"Operting system not found"错误信息,硬盘启动失败。用软盘启 动成功,试图进故硬盘时,出现:"Invalid drive Specification"错误信息。

  故障分析:Norton DiskEdit看磁盘的物理0扇区,发现分区结束标志55AA被破坏。

  解决方案:这种问题我们也利用NDD来加以修复,如果你没有NDD,也可以采用相应的磁盘编辑工具,直接将物理0扇区的最后两个字符改为16 进制的55AA就可以了。

  五、出错信息:开机屏幕显示"Operting system not found",用Win98启动以后有三条出错信息,在DOS下不能看到任何分区,用DiskEdit 看主引导扇区,发现已经被完全破坏。

  故障分析:这种问题应该是分区表被严重破坏的表现,可能是病毒或者人为的误操作(比如使用Ghost恢复分区时选择了错误的选项)。

  解决方案:参照前面我们介绍的"分区表破坏"来进行恢复。

  六、出错信息:开机后屏幕上出现"Error loading operating system""Missing operating system"或者是"Disk I/O Error Replace the disk then press any key"的提示信息。

  故障分析:造成该故障的原因一般是DOS引导记录出现错误。DOS引导记录位于逻辑0扇区,是由高级格式化命令Format生成的。主引导程序在 检查分区表正确之后,根据分区表中指出的活动分区的起始地址,读DOS引导记录,若连续读五次都失败,则给出"Error loading opearting system"的错误提示,若能正确读出DOS引导记录,主引导程序则会将DOS引导记录送入内存0:7C00h处,然后检查DOS引导记录的最后两个字节是 否为55AAH,若不是这两个字节,则给出"Missing operation system"的提示。

  解决方案:对于以上这些问题都可以使用NDD来解决,不过根据不同的出错提示还有不同的解决方案:

  1.出错提示为"Invalid system diskReplace the disk and then press anykey"。这种情况一般是因为系统引导文件IO.sys被删除或 者损坏,可以用"sys A: C:"将系统引导文件传送到C:盘。

  2."Error loading system"错误提示。这种提示说明分区表中标明的活动分区的起始位置错误或者DOS引导记录出错,只能用NDD修复。

  3."Missing operating system"出错提示。用DiskEdit编辑相应活动分区的引导区,并将最后分区结束标志改成55AA

  对于以上几种出错信息,如果你的数据不是很重要,也可以考虑用Format来解决问题,不过我们强烈建议你采用NDD来修复,这样如果你改 错了,还有后悔的余地(Undo),这也是我们前面告诫大家用NDD一定要做Undo的原因之所在。

  七、出错提示:机器加电自检以后可以出现"Starting MS DOS"的提示符,但是最后却出现了"Bad or missing command interpret"这样的 出错提示。

  故障分析:出现这种问题应该在DOS引导的后期,IO.SYS处理完MS.SYS后,要装入命令解释器Command.com却找不到。

  解决方案:很简单,软盘启动以后,将软盘上的Command.com拷贝到C:盘的根目录下。

二十五:硬盘软故障完全修复方法

 

 

修复硬盘主引导记录

  由于病毒的破坏或操作上的失误,使硬盘主引导记录和分区表损坏,硬盘将 无法启动。

  ① KV3000

  作为一款著名的杀毒软件,KV3000同样具有非常强大的主引导记录和分区修 复的功能。我们可以先用软盘启动后,执行KV3000,按下F6键,就可查看已经不 能引导的硬盘隐含扇区,即查看硬盘001扇区主引导信息是否正常,如果在 硬盘的001扇区,没有找到关键代码,即硬盘分区表关键代码“80”“55 AA ”,那么硬盘本身将不能引导,即使软盘引导后也不能进入硬盘。这时,可按动 翻页键PgDnPgUp键,在硬盘的隐含扇区内查找,如有,会在表中出现闪动的红 色“80”和“55AA”,并响一声来提示你,下行会出现一行提示,“F9 = Save To Side 0 Cylinder 0 Sector 1 !!!”。这时,按一下“F9”键,就可将刚找 到的、即在表中显示出的原硬盘主引信息, 覆盖到硬盘001扇区中,然后, 机器会重新引导硬盘,恢复硬盘的起动性能。

  ② FDISK

  用FDISK/MBR覆盖主引导记录的代码区,但不重建主分区表。适用于主引导 记录被引导区型病毒破坏或主引导记录代码丢失,但主分区表并未损坏的情况下 。注意:FDISK/MBR并不适用于清除所有引导型病毒,因此要慎用。

  ③ FIXMBR

  FIXMBR是专门用于重新构造主引导扇区的小工具,使用方法也简单。直接运 FIXMBR的情况下它将检查MBR结构,如果发现系统不正常则会出现是否进行修 复的提示。如果回答“YES”,它将搜索分区。当搜索到相应的分区以后,系统 会提示是否修改MBR,回答“YES”则开始自动修复,如果搜索的结果不对,可使 /Z开关符,重新启动系统将恢复到原来的状态。如果想详细了解FIXMBR的使用 方法,可以用/H开关来查看。

  ★ 修复硬盘分区表

  ① KV3000

  在KV3000的主菜单上,按下F10键,就可对系统的有关参数和硬盘分区表快 速测试, 如果硬盘分区表不正常,KV3000会先将坏分区表保存到软盘上以防不 测,再自动重建硬盘分区表,使硬盘起死回生。

  但如果硬盘只有一个分区,而且文件分配表(FAT)、文件目录表(ROOT) 严重损坏,数据已经都没有了。那么,用这个功能即使恢复了C盘分区表,也不 能使C盘引导,数据也不能恢复。这时需要配合其它的硬盘修复工具来恢复数据 。如果硬盘还有DE...等几个分区,一般情况下,KV3000能找回后面没有被 破坏掉的分区,重建一个新的硬盘分区表,然后,再用DOS系统软盘引导机器后 ,就可进入硬盘后面几个分区,将数据备出后,再将硬盘重新分区、格式化。

  KV3000修复硬盘的详细使用方法,大家可以查看KV3000杀毒软件的使用说明 文件,也可以到江民网站去查看。

  ② FDISK

  用FDISK还可以新建立分区、重建主分区表,但这种方法不覆盖主引导记录 的代码区。如果要保证硬盘内数不受破坏,分区时必需与原来的分区相一致,否 则数据不保。具体的使用方法我就不哆嗦了,建议大家使用FDISK的汉化版,很 容易上手。

  ③ DiskMan

  DiskMan过人之处就在于它的硬盘分区表恢复功能,并采用图形界面,以图 表方式表示分区表的详细结构。使用方法详见《宝刀不老的小工具——DiskMan

  ★ 挽救硬盘FAT(文件分配表)和DIR(根目录表)

  如果FAT表损坏,就可能丢失所有文件,即便对DOS很精通的人,要修复FAT 损坏的磁盘文件也不是件轻松的事情。

  ① NDDNorton Utilities 8.0

  启动NU工具包中的磁盘修复程序NDD,在其菜单中选择Options/General确认 NDD将进行包括主引导区和CMOS在内的全面检查,然后在主菜单中选择Diagnose Disk对硬盘进行诊断,NDD在发现错误时将会自动报告,并提示错误描述( Description)和推荐意见(Recommendation),可以根据情况选择修复与否。 修复时注意保存UNDO磁盘,以便恢复操作之用。在修复过程中,尤其是在表面测 试(Surface Test)过程中如果提示读写错误,则说明硬盘存在物理损坏,数据 可能会丢失。

  在诊断、修复结束后重新启动计算机,若能对C盘进行访问则大功告成,可 以通过备份数据、重装操作系统简单地恢复硬盘功能。否则只能进行恢复操作( UNDO),尝试手工或通过其他方法恢复。 NDDNorton Utilities 8.0)只能在DOS下运行,且不支持FAT32格式。

  ② SCANDISK

  微软操作系统自带的类似NDD的硬盘检测工具,大家对它应该都不会陌生, 因为我们在WIN 9X非法关机后重启时它就会自动运行扫描硬盘,用法有点类似 NDD

  ③ CHKDSK

  同样也是微软操作系统自带的DOS下专门用于检查硬盘的工具,CHKDSK/F 令格式专门用来捡回硬盘的丢失簇并释放丢失的硬盘空间,有时我们可以在它运 行以后生成的*.CHK文件里找到一些重要的数据。

  硬盘的FAT表与根目录随着用户写入和删除文件而不断变化,如果能经常备 FAT表和根目录,当FAT表损坏时用回写FAT表、根目录的方法,可以使硬盘恢 复到上一次保存的状态。当硬盘的FAT表或根目录损坏,需要将保存的FAT表、根 目录数据回写时,必须保证FAT表和根目录的起始逻辑扇区号和长度(扇区个数 )正确。

  ★ 恢复误删除的分区

  ① FDISK & formAT

  如果在误删除分区后没有执行过其他分区操作,按照下面的方法一般都能够 恢复原来的数据:执行FIDSK分区程序,重建删除的分区,但是注意要保持分区 与原来分区在大小、位置上一致;重新启动系统到MSDOS模式,执行“format X:/u/q”(X为误删的扩展分区盘符)。这时系统首先会警告说:“这是一个大 硬盘,如果格式化,数据将全部丢失”,这时选择“YES”;而后系统会告诉你 该分区无法进行快速格式化并问你是否进行“完整格式化”,回答“NO”。该步 骤的关键是加入参数/q(快速格式化),这样进行一次“假格式化”后,如果没 有什么意外的话,应该可以访问该分区的数据了。

  另外,该方法恢复的分区有可能在再次重启系统后无法访问,虽然仍可以按 上面的方法恢复数据,但我们建议恢复分区后备份该分区所有数据,而后执行完 整的格式化过程。

  ★ 硬盘零磁道损坏的抢救

  ① DE PCTOOLS 9.0

  如果运行ScanDisk扫描C盘在第一簇出现一个红色的“B”,即说明C盘零磁 道损坏!在DOS下运行DE,先进入Options菜单,选项Configuration,按空格去 Read Only(只读模式)前面的“√”号(按Tab键切换),保存退出。接着选 主菜单Select中的Drive;进去后在Drive type项选Physical,按空格选定,再 Tab键切换到Drive项,选中hard disk,然后选OK回车。之后回到主菜单,打 Select菜单,这时会出现Partition Table,选中并进入,之后就可以看见硬 盘的分区表信息。例如:该硬盘有两个分区,那么在硬盘的分区表信息中我们可 以看到1分区就是C盘,该分区是从硬盘的0柱面开始的,那么将1分区的Beginnig Cylinder0改成1就可以了。保存后退出。重新启动进入BIOS,运行自动侦测硬 盘可以看到CYLS的个位数减少了一位(例如:782781),保存退出,重新分区 格式化,大功告成。

  但DE不支持FAT32格式且只在DOS下运行,而且PCTOOLS 9.0现在已经不太好 找了,想当年它与Norton Utilities 8.0在工具软件之中是两朵奇葩……

  ② PQMAGICT

  大名鼎鼎的分区魔术师(Partition Magician)可能是大家最常用的硬盘分 区工具。PQMAGICT是它的DOS版的工具,用它来修复损坏的硬盘零磁道可谓易如 反掌。

  假设一块硬盘有两个分区(CD),用ScanDisk检查D盘时显示D盘零磁道损 坏,因此不能用formAT不能进行格式化,如果用FDISK重新调整逻辑D盘的大小, 使D盘的逻辑0磁道向前或向后移动,跨越这个坏磁道,但这样一来,就会破坏C 盘上的所有数据。因此这时我们必须借助PQMAGICT的威力。首先在DOS下启动 PQMAGICT(必须先把PQ COPYC盘),选择查看D盘,此时屏幕会显示D盘的分区 和容量信息,然后选择Option菜单中的Reszie Selected Partition,用鼠标拖 动左边的容量标尺,让D区减少一点,或者直接手动输入分配D区的容量大小,目 的是空出坏的区域,确定后PQMAGICT便开始对D区进行转换,完成以后退出 PQMAGICT。这样对C盘上的文件秋毫无犯,且D盘又重见天日了。

  ② SPecialFDisk

  SPecialFDisk在建立主分区时可由使用者自定启始柱面,故可跳过损坏的柱 面区域。此招是SPecialFDisk的一个必杀技,使用方法请详见《宝刀不老的小工 具——SPecialFDisk

  ★ 抢救被“逻辑锁”锁定的硬盘

  ① DM

  中了“逻辑锁”的硬盘不能用软盘、光驱、双硬盘正常启动,但我们可以利 用软件DM为硬盘解锁。因为DM是不依赖于主板BIOS识别硬盘的硬盘工具,就算在 主板BIOS中将硬盘设为“NONE”,DM也可识别硬盘并进行分区和格式化等操作。 首先你要把DM拷到一张系统盘上,接上被锁硬盘后开机,按DEL键进入BIOS设置 ,将IDE硬盘设为“NONE”(这是关键所在!)。保存设置后退出,系统即可“ 带锁”启动。启动后运行DM,你会发现DM可以识别出硬盘。选中该硬盘进行分区 格式化就可以了。但是,这种方法的弱点是硬盘上的数据将全部丢失。

  硬盘软故障的产生原因比较复杂,病毒、误操作,甚至一次意外掉电都可能 使硬盘崩溃。因此平时一定要养成备份硬盘重要数据的习惯,在关键时刻才能顺 利地解决问题。 

 

二十六:硬盘故障修复数据技巧

 

谁都知道硬盘的重要性,没有硬盘,计算机就成了废物。前段时间我的硬盘不知为什么坏了。就听声音嘎吱嘎吱响。当时那个哭啊!眼泪就跟下雨一样。要知道我这块硬盘可是我的宝贝啊,里面收藏了很多重要的资料,尤其是赖以生存的稿件!因为有重要资料不能直接拿去修(保修期内),所以我只能自己先动手抢救数据。

 

  笔者首先决定看看在BIOS中能否找到硬盘(在开机自检时检测不到硬盘),按Del键顺利进入BIOS,在IDE设备中未发现硬盘编号显示。遂不甘心,于是在四个IDE设备中(已取下光驱连接,因出现过光驱和IDE连接故障导致硬盘无法读取的案例)Enter进行查找。经过漫长的等待,终找到硬盘。在退出BIOS前,将启动顺序改为首先从光盘启动,软驱次之,保存退出。关机,连接好光驱(硬盘和光驱在同一根数据线,并设置好主盘从盘),再取下硬盘置于手中细细查看。

 

  发现硬盘的数据针部位有些许灰尘,便用餐巾纸轻柔擦拭(灰尘也可能导致硬盘数据针脚和数据线接触不良,从而导致找不到硬盘)。并取出吹气球和毛笔刷对硬盘PCB板和芯片进行了除尘维护,断绝由灰尘引发故障的源头。这一切完成后,接硬盘为主盘,开机。仍然有嘎吱嘎吱响,自检未发现硬盘,系统开始由光盘引导至光盘菜单界面(笔者光盘是自己烧录的工具盘,集成了各种DOS版本下的工具软件)。笔者决定启动Diskman尝试一下可否找到硬盘(若是分区表错误,Diskman可自动修复并保留数据)Diskman显示硬盘未安装,于是再使用Partitiom Magic 6.0(分区魔术师),出现这样的提示:硬盘错误,无法继续。接下来使用Ghost结果出现Error提示,而当用Easyrecover(硬盘数据恢复工具)时在搜寻了半天之后操作界面只显示找到软驱,似乎真的无法找到硬盘。此过程中,嘎吱嘎吱响声继续,笔者吓得直冒虚汗。

 

  当这些软件都一一败阵后,摆在面前可供笔者选择的只有二条路:1.低格(如果可以找到硬盘的话,此法数据必挂)2.用热拔插法进入Windows,然后用Windows版的Partitiom Magic 6.0(分区魔术师)进行重新分区、格式化(此法可保留数据,但若开机就挂第二个硬盘则可能因其中一硬盘通不过自检而无法引导系统至Windows)。思量再三后,权衡了硬盘数据和硬盘自身的价值,笔者选择了后者(几万字的稿子可换个SCSI硬盘了)。下面,进行操作。先借来一块好的硬盘进行系统引导,在自检过后,马上把电源插孔插上笔者的IBM坏硬盘,这时,笔者心中很紧张,害怕当机或是进不去系统。然而,虽然进去了,可没有发现我的坏硬盘。右击我的电脑,选择属性,在设备管理器的硬盘控制器中发现了黄色的“!”符号,那是不是我的硬盘?再进入控制面板,在添加新硬件处搜索了半天,没有找到我的硬盘,无果,只好关机。

 

  怎么办?笔者只好借了“本本”上网查询资料求助,在一位“大虾”指点下,把问题定位在驱动芯片上……经这一提醒,再一摸自己的硬盘,果然发现驱动芯片发热量异常(一定要断电后触摸,带电触摸会造成短路烧坏硬盘)。良久,笔者懊恼地打开一灌啤酒解愁,酒一下肚,昏昏地记起初中物理老师讲过酒精可以散热。

 

  再开机,笔者已把一团棉花沾好酒精紧贴在硬盘的驱动芯片上(PCB板上右边最小的那块,编号为cl4590G2018),随着系统的启动不断地往上滴酒精(操作要很细微)。自检居然在缓了一下之后,通过了,然后显示出:The disk is errorReplace any key to continue。这可以理解为,分区表错误或c盘数据崩溃了吧。由于害怕硬盘芯片发热量导致当机,所以决定先关机给硬盘安装最好的散热装备。先把空调调到最低温度,并准备落地扇;然后找了块显卡的散热片(带风扇)贴在硬盘驱动芯片上;最后用准备好的落地扇对着硬盘吹。

 

  先接好双硬盘,然后再开机,由于加了散热片和风扇,就不用滴酒精了。就这样,终于进了系统。马上双击我的电脑,等了半天,进去了。可是原来硬盘的C区不见了(估计是物理分区崩溃了),幸好我的资料保存在D区,于是赶紧将其复制到朋友的好硬盘中。

 

  经过这番折腾,终于把宝贵的资料取出来了。资料拿出来就好办了,硬盘可以用其他途径来维修了。

 

  编后语:硬盘是电脑配件中耐用的配件,但是往往出了问题就是最严重的,所以有重要的资料最好还是备份到光盘上。上面提到的修复办法,是需要一定的DIY技巧和物理知识,如果你的技术不是很纯熟,请尽量找别人帮忙,切勿模仿!

 

二十七:硬盘长寿的奥秘 使用维护十五招

http://bbs./viewthread.php?tid=2914418&sid=S2ori4

 

硬盘是电脑中保存信息资源的重要外部设备,尽管现在生产商硬盘技术先进和精密,硬盘的故障率通常低于其他存储设备,但只有正确的维护和使用才能保证硬盘发挥最佳的性能,才可以保证数据安全和硬盘的寿命。

 

1、保持电脑工作环境清洁

  硬盘以带有超精过滤纸的呼吸孔与外界相通,它可以在普通无净化装置的室内环境中使用,若在灰尘严重的环境下,会被吸附到PCBA的表面、主轴电机的内部以及堵塞呼吸过滤器,因此必须防尘。

  还有环境潮湿、电压不稳定都可能导致硬盘损坏。

 

  2、养成正确关机的习惯

  硬盘在工作时突然关闭电源,可能会导致磁头与盘片猛烈磨擦而损坏硬盘,还会使磁头不能正确复位而造成硬盘的划伤。关机时一定要注意面板上的硬盘指示灯是否还在闪烁,只有当硬盘指示灯停止闪烁、硬盘结束读写后方可关机。

 

3、正确移动硬盘,注意防震

  移动硬盘时最好等待关机十几秒硬盘完全停转后再进行。在开机时硬盘高速转动,轻轻的震动都可能碟片与读写头相互磨擦而产生磁片坏轨或读写头毁损。所以在开机的状态下,千万不要移动硬盘或机箱,最好等待关机十几秒硬盘完全停转后再移动主机或重新启动电源,可避免电源因瞬间突波对硬盘造成伤害。在硬盘的安装、拆卸过程中应多加小心,硬盘移动、运输时严禁磕碰,最好用泡沫或海绵包装保护一下,尽量减少震动。

  注意:硬盘厂商所谓的“抗撞能力”或“防震系统”等,指在硬盘在未启动状态下的防震、抗撞能力,而非开机状态。

 

  4、用户不能自行拆开硬盘盖

  此外硬盘的制造和装配过程是在绝对无尘的环境下进行,切记:一般计算机用户不能自行拆开硬盘盖,否则空气中的灰尘进入硬盘内,高速低飞的磁头组件旋转带动的灰尘或污物都可能使磁头或盘片损坏,导致数据丢失,即使仍可继续使用,硬盘寿命也会大大缩短,甚至会使整块硬盘报废。

 

  5、注意防高温、防潮、防电磁干扰

  硬盘的工作状况与使用寿命与温度有很大的关系,硬盘使用中温度以2025℃为宜,温度过高或过低都会使晶体振荡器的时钟主频发生改变,还会造成硬盘电路元件失灵,磁介质也会因热胀效应而造成记录错误;温度过低,空气中的水分会被凝结在集成电路元件上,造成短路。

 

  也可用软件监控硬盘温度

  DTemp是一款监控硬盘温度的软件,它能够实时地向用户报告硬盘的工作温度,并允许用户定制一个温度的上限值,防止硬盘因温度过高而出现工作不稳定的状况。可以在天极下载频道下载到这个大小仅为93.5KB的软件,解压后软件后你会发现在屏幕下方的任务栏中出现了一个驱动器状的小图标,图标上方伴随有一个不断变化的温度显示,这个温度就是硬盘当前的工作温度。双击该图标会出现一个设置界面,其中,“Check temperature every1minutes”一项为检测硬盘温度的周期,建议大家选择默认设置(一分钟一次)。“HDD critical temperature40)℃”一项为设定硬盘的温度上限值。在这里需要根据用户使用硬盘的转速而定,如果是5400转的硬盘,建议设定为40℃,7200转的则可以设为50℃。带有颜色选择的“Normal temperature color”和“Critical temperature color”两项为硬盘在正常温度和超出上限值时的不同状态显示,大家可以根据自己的喜好进行选择,只要醒目即可。可选项“Warning about critical temperature”是让用户选择当硬盘超出上限值时是否发出警告?毫无疑问,我们应该选择“是”。“Warning about SMART failure”一项是让用户选择当硬盘的“SMART”技术发现硬盘存在问题时是否发出警告,这一点对硬盘的安全性很重要,建议选择“是”。

 

  湿度过高时,电子元件表面可能会吸附一层水膜,氧化、腐蚀电子线路,以致接触不良,甚至短路,还会使磁介质的磁力发生变化,造成数据的读写错误。湿度过低,容易积累大量的因机器转动而产生的静电荷,这些静电会烧坏CMOS电路,吸附灰尘而损坏磁头、划伤磁盘片。机房内的湿度以4565%为宜。

 

  另外,尽量不要使硬盘靠近强磁场,如音箱、喇叭等,以免硬盘所记录的数据因磁化而损坏。

 

  6、要定期整理硬盘

  定期整理硬盘可以提高速度,如果碎片积累过多不但访问效率下降,还可能损坏磁道。但不要经常整理硬盘,这样也会有损硬盘寿命。

 

  7、注意预防病毒和特洛依木马程序

  硬盘是计算机病毒攻击的重点目标,应注意利用最新的杀毒软件对病毒进行防范。要定期对硬盘进行杀毒,并注意对重要的数据进行保护和经常性的备份。建议平时不要随便运行来历不明的应用程序和打开邮件附件,运行前一定要先查病毒和木马。

 

  8、正确拿硬盘的方法

  在电脑维护应以手抓住硬盘两侧,并避免与其背面的电路板直接接触,要轻拿轻放,不要磕碰或者与其他坚硬物体相撞;不能用手随便地触摸硬盘背面的电路板,因为手上可能会有静电,静电会伤害到硬盘上的电子元件,导致无法正常运行。还有切勿带电插拔。

 

  9、让硬盘智能休息

  让硬盘智能地进入“关闭”状态,对硬盘的工作温度和使用寿命给予很大的帮助,首先进入“我的电脑”,用鼠标左键双击“控制面板”,然后选择“电源管理”,将其中“关闭硬盘”一项的时间设置为15分钟,应用后退出即可。

 

  10、轻易不要低格

  不要轻易进行硬盘的低级格式化操作,避免对盘片性能带来不必要的影响。

 

  11、避免频繁的高级格式化操作

  它同样对盘片性能带来影响,在不重新分区的情况下,可采用加参数“Q”的快速格式化命令。

 

  12、硬盘出现坏道时

  硬盘中如出现坏道,即使是一个簇都可能具有扩散的破坏性,在保修期内应尽快找商家和厂家更换或维修,已过保修期则尽可能减少格式化硬盘,减少坏簇的扩散。

 

  13、善用磁盘工具

  善用各类磁碟工具,如Norton UtilitiesNorton CleanSweep等,定时清理自己的硬盘,可提高系统整体效能。

 

  14.建立RESCUE DISK

  使用Norton Utilities工具软件将硬盘分区表、引导记录以及CMOS信息保存到软盘上,以防万一。

 

  15、尽量不要使用硬盘压缩技术

  当压缩卷文件逐渐增大时,硬盘的读写数据大大地减慢了。如果磁盘的容量够用,没有必要在使用硬盘压缩技术

二十八:使用移动硬盘过程中的常见问题

 

 

移动硬盘是一个非标准的usb设备,使用中远不如鼠标这样可靠,问题多多,这里就很多常见情况总结一下:

 

  1、如果你的硬盘盒子是50元以下的,尤其是标着IBM字样的,请赶快换掉这个盒子。(我可没有其它的意思.这是很多案例证明的结果)这种盒子早期还可以,自从03年起生产的质量就不可忍受了,很多的故障都发生在这种盒子上,如果您还爱惜你的硬盘,请换掉它。

 

  2、移动硬盘分区不要超过2个。这个相信大家都知道是为什么了吧!

 

  3、使用200元以下盒子的移动硬盘最好都不要插在机器上长期工作,移动硬盘是用来临时交换数据的,不是一个本地硬盘。

相比于笔记本内置的,移动硬盘里面的笔记本硬盘时刻都工作在恶劣的环境下,应该尽量缩短工作时间。

正确的使用方法是使用本地硬盘下载资料等,然后copy到移动硬盘上,而不是挂在机器上整夜下载。

这个说法等于给在usb1.1接口copy海量数据宣判死刑,如果要大量copy数据赶紧加个usb2.0卡吧。

 

  4、不要给移动硬盘整理磁盘碎片,整理的方法就是把整个分区里面的数据都copy出来,再copy回去。

 

  5、移动硬盘认不出或者copy会断线如何解决?

  (1)不使用usb加长线,这种线的质量一般不太好,会使usb数据同步出错,使移动硬盘不能正常工作。不使用机箱上的前置usb接口,原因同前。尽量把移动硬盘插在原本的usb口上。

  (2)淘汰你的劣质usb硬盘盒,更换劣质的数据线为带屏蔽层的优质usb线(就是比较好的盒子带的线)。

  (3) usb接口兼容性不佳,非intel芯片组的主板有时候有usb兼容性差的问题,但是现在正在销售的主流芯片组里几乎只有nforce2了,传说新的 biosusb驱动改善了nforce2usb兼容性,但是实践证明改善很有限。彻底解决这问题的方法只有购买一个pciusb2.0卡,其他参见 6

 

  6、如何解决供电不足的问题?(供电不足是5的一大原因)

  (1)购买比较好的usb移动硬盘盒。

  (2)购买4200转的笔记本硬盘做移动硬盘。不要买5400转的。不要相信硬盘上面标的电流值,那没有参考价值。实践证明 hitachi 4200转诸型号比如 4k80 4k40 80GN等都是不错的选择。一般不买富士通或者东芝的,因为在大陆没有正式的渠道商。一般也不买st的,因为ST的硬盘一般都是5400的,尽管电流值标的是0.47A

  (3)购买笔记本电脑时,考虑一下一下usb口的供电能力。已经证明usb接口供电能力太弱的是:三星Q20/ dell 300m/X300 ; sony V505 IBM R40之前的几乎所有Rtoshiba P2000/2010 ....usb供电能力差,多见于日韩系轻薄机。我最赞赏的就是IBM X31usb口,不管移动硬盘(哪怕是5400转的);外置combo一律通吃,其供电能力不亚于一般台机。 如果购买pciusb2.0卡,要挑有4针辅助供电口的;如果购买笔记本用的pcusb2.0转接卡,要挑带一个变压器辅助供电的,好歹也要有带一个 ps2辅助供电线的。

  (4)移动硬盘盒子自身也有辅助供电线的,好盒子直接给一个变压器,差的盒子也有ps2或者usb的供电线,供电不足时当然要插上,即使usb口足够带动硬盘,如果不是短时间工作,建议也插上,usb接口的供电总是很勉强的。

 

  7、千万不要混用供电线!!

  某个盒子的线就只给某个盒子用,某张pc卡的供电线只能给那个型号的卡用。供电线的接口电压定义各有不同,乱插轻则烧盒子,重则烧硬盘。

 

  8、如何让移动硬盘跑得更快?

  copy大的文件肯定比细碎的小文件有效率,下面的的数据都是针对大文件copy的。

  (1)usb1.1 必须升级为usb2.0 台机有pciusb2.0卡, 笔记本有pc卡的usb2.0卡。买卡时不能贪便宜,100元以下的笔记本卡,50元以下的台机卡都不要买。

  (2)硬盘的型号要新一点,一般02年起生产的盘都有跑到15M/s+的能力。

  (3)usb接口:首先供电要足。控制芯片以NEC或者INTEL ICH4/5南桥带的为佳,其次ALI,最次VIA。不过这些芯片其实都有15M/S的能力,还要看pcb板的设计和做工。

  (4) 盒子要好。芯片的选择 ISD300 > ALI 5621> meson?(忘了型号)> GL811 =ALI (猥琐版,型号忘了,很小),NEC的桥接芯片很少用在硬盘盒子上,一般都是在光驱盒子里使用,NEC的也很不错,可以和ISD300相比。实际上GL811也有跑到18M/s的水平,和转接卡一个道理,速度更看pcb的设计与做工。卡和盒子,拣贵的买肯定没错的。

  (5)本地硬盘也要足够快。

  (6) usb1.1的速度是1M/s usb2.0的及格水平是10M/s, 如果不足10M/s, 那么在 笔记本硬盘, 盒子, 接口,本地硬盘之中至少有一个瓶颈。 我用ASUS intel 845PE主板,元古双接口盒子(ISD300),hitachi 80GN的硬盘,本地硬盘ST7200.7, 速度可以达到 22M/s, 同样平台用罄城GL811的盒子也达到了18M/s 22M/s已经几乎是硬盘传输速度的极限了,似乎这个时候usb2.0的带宽还没有喂饱。 劣质usb卡甚至只能跑到4M/s足见差距。

  (7)太多细碎的小文件也可以用winrar打包后再copy

 

  91394移动硬盘的专述:

  (1)供电:机器自带的61394口额定电流为1A,已经足够带动所有移动移动硬盘,甚至台机硬盘。 4针口不供电,必须给移动硬盘另外供电。 pc卡接出来的1394也不能供电,必须给pc卡或者移动硬盘工供电。

  (2)1394接口: TI双芯片为最佳;ricoh的也很不错,不过很少出现在零售的卡里, IBM X系列板载的常常是ricoh的,ALI的还可以, VIA的最差(一般台机主板板载都是这个),不过还是那句话,做工比芯片重要。

  (3)盒子:一般的移动硬盘的1394都是用oxford911 桥接的,没看到缩水的芯片。oxford922是一个更加优秀的IC,单芯片搞定usb2.0/1394双接口,现在已经有一些高档3.5寸硬盘盒使用, 2.5寸的盒子还没有看到。 PL-3507是台湾一家ic设计公司的产品,同样是单芯片双接口,性能待测,我刚看到产品。

  (4)实测:我的平台用了一个TI双芯片的PCI1394卡, 元古双接口盒子(oxfd911),80GN,速度也是22M/S。曾经测试过的顶峰速度也有24M/s 而同样的盒子和硬盘在compaq X1000(板载VIA1394IC),速度是1718M/s

  (5)1394的最大优点是CPU占有率低。

 

  10、妥善保护你的移动硬盘。

  切忌摔打,轻拿轻放; 注意温度,太热就停; 干燥防水,先删再拔。

 

关于里面疑问的回答:

  问:为什么不能给移动硬盘整理碎片呢?是整理碎片对硬盘不好吗?那笔记本是不是也要尽量少整理碎片呢?

  答:外置硬盘通过一个usb接口和主机连接,如果同时数据上行和下行,速度会很低,而整理磁盘碎片的过程就是就是数据的频繁上行下行,由于速度慢,这个过程会非常漫长, 还不如copy出来再copy 回去。1394也是一个道理。

 

  问:供电充足时分区数量和使用效果无关。

  答:分区的数量多了在接通时,卷标的弹出会很慢,与供电的问题倒是确实无关。

 

  问:对于现在常见的金属移动硬盘盒,它的工作温度比内置的可爽多了。内置硬盘出问题更麻烦,所以我都是直接下载到移动硬盘的分区中,然后在分类备份。

  答:移动硬盘里面的硬盘工作环境恶劣不仅仅指温度,还有恶劣的供电状况, 简陋电路接出来的ide接口。

二十九:让硬盘永远工作在最佳状态的小技巧

 

 

下面就分两大方面来介绍一下硬盘的优化设置技巧:

 

  一、BIOS的相关项优化

  BIOS对硬盘的效能发挥起着至关重要的作用,例如由于主板BIOS的问题导致无法识别超大容量的硬盘、Ultra ATA/66/100硬盘,那不是大大的浪费吗?

 

  1.Standard CMOS Setup

  这里主要是对硬盘的工作模式和类型进行优化,我们一般会看到下列几种常见的工作模式:NORMALLBALARGE以及AUTO。在这里,建议各位优先选择“AUTO”,既方便也安全。另外,在“TYPE”项中,最好能设置成“User”,这样可以节省系统检测硬盘参数的时间,加快启动速度。

  2.BIOS Features Setup

  建议“Boot Sequence”项设置为“C Only”,这样可以跳过对软驱的检测而直接从硬盘引导系统,既节约检测时间也可以避免软盘上的病毒侵入系统。

  “IDE HDD Block Mode”项是用来设置IDE设备块模式的扇区数,请设置为“Enabled”,这样可以使用块模式传递数据,提高访问硬盘的速度。

 

  二、硬盘的接口模式优化

  虽然硬盘的技术发展不像CPU频率提高那样迅速,但现在的主流硬盘已全部采用Ultra ATA/66/100接口技术,因此要想充分发挥硬盘的性能,打开Ultra ATA/66/100模式是必不可少的。由于媒体对在Windows 9x/Me下打开Ultra ATA66/100模式已介绍过很多,因此这里仅针对Windows 2000/XP作一些介绍:

 

1.Intel系列主板

  安装Intel芯片组驱动程序后,虽然系统能正确识别出硬盘控制器和硬盘型号,但此时硬盘的接口模式却会降一级使用,也即 Ultra ATA/100/66会降到Ultra ATA/66/33,必须再另行安装Intel Ultra ATA Storgae驱动程序,从 Companion”窗口中可以看到更多的信息,Default Transfer Mode表示默认状态下的传输模式, Current Transfer Mode表示当前状态使用的传输模式。

  2.VIA系列主板

  令人奇怪的是,虽然Windows 2000/XP可以正确识别硬盘的型号,但安装了VIA四合一驱动程序包后,虽然系统能正确识别出硬盘控制器 VIA BUS Master PCI IDE Controller”,但“Primmary IDE Controller (dual fifo)”和Secondary IDE Controller(dual fifo)”却仍使用着微软默认的驱动程序,而且此时 VIADMATool并不像在Windows 9x/Me下那样接管UDMA设备,因此如果硬盘是Ultra ATA/100/66的,就会降一级到 Ultra ATA/66/33,朋友们可以?*** WINFO32查看。

  为了解决这一问题,朋友们可以从驱动之家下载威盛发布的IDE Miniport Driver,安装后可以在“VIA Bus Master PCI IDE Utility”中清楚地看到硬盘当前所处的接口模式,而且还可以手动切换。

 

硬盘的正确使用与坏道修复

  盘使用久了,便有可能出现各种各样的问题,而硬盘“坏道”是这其中最常见的问题。如果在保换保修期内,你可将硬盘拿到销售商出处更换,而过了三保期又该怎么办呢?下面是笔者维修维护硬盘的一些方法,希望能对你维修硬盘有所帮助。

 

  一、硬盘出现坏道的先兆

  硬盘坏道分为逻辑坏道和物理坏道两种,前者为软坏道,通常为软件操作或使用不当造成的,可用软件修复;后者为真正的物理性坏道,它表明你的硬盘磁道上产生了物理损伤,只能通过更改硬盘分区或扇区的使用情况来解决。出现下列情况也许你的硬盘有坏道了:

  首先,你在打开、运行或拷贝某个文件时硬盘出现操作速度变慢,且有可能长时间操作还不成功或表现为长时间死“啃”某一区域或同时出现硬盘读盘异响,或干脆Windows系统提示“无法读取或写入该文件”,这些都可表明你的硬盘某部分出现了坏道。

  其次,每次开机时,Scandisk磁盘程序自动运行,肯定表明你的硬盘上有需要修复的重要错误,比如坏道。你在运行该程序时如不能顺利通过,表明硬盘肯定有坏道。当然,扫描虽然也可通过,但出现红色的“B”标记,表明其也有坏道。

  第三,电脑启动时硬盘无法引导,用软盘或光盘启动后可看见硬盘盘符但无法对该区进行操作或操作有误或干脆就看不见盘符,都表明硬盘上可能出现了坏道。具体表现如开机自检过程中,屏幕提示“Hard disk drive failure Hard drive controller failure”或类似信息,则可以判断为硬盘驱动器或硬盘控制器硬件故障;读写硬盘时提示 Sector not found”或“General error in reading drive C”等类似错误信息,则表明硬盘磁道出现了物理损伤。

  最后,电脑在正常运行中出现死机或“该文件损坏”等问题,也可能和硬盘坏道有关。

 

  二、硬盘坏道的维修

  Scandisk磁盘扫描程序是解决硬盘逻辑坏道最常用的工具,而我们常见的format命令不能对任何硬盘坏道起到修补作用,这点大家需明白。如果硬盘出现了坏道,我们可在Windows系统环境下,在“我的电脑”中选中要处理的硬盘盘符,选择其“属性”,在出现的“工具”按钮中选择“查错状态”,点击“开始检查”,再在“扫描类型”中选“全面检查”,并将“自动修复错误”打上“勾”,然后“开始”既可,它将对硬盘盘面做完全扫描处理,并且对可能出现的坏簇做自动修正。其次,在DOS状态下,硬盘有坏道,计算机在启动时一般会自动运行Scandisk进行扫描,并将坏簇以黑底红字的“B”(bad)标出。当然,如果系统在启动时不进行磁盘扫描或已不能进入Windows系统,我们也可用软盘或光盘启动盘启动电脑后,在相应的盘符下,如“A:”下运行 Scandisk *:(注:*为要扫描的硬盘盘符),回车后来对相应需要扫描修复的硬盘分区进行修理。

  其它的如诺顿工具箱中的NDD“磁盘医生”及Pctools等相关工具对硬盘进行扫描也是修复硬盘坏道的最常用的方法,其用法很简单,许多报刊上也有介绍,大家可找来试用一下。

  如果硬盘上出现了无法修复的坏簇或物理坏道,大家可用一些磁盘软件将这些坏道单独分为一个区并隐藏起来,这样可令你的硬盘延长使用寿命。

  方法一:如一块4.3G硬盘在2G处有严重的物理坏道,用format格式化进行不下去,ScandiskNDD检测也通不过,但能正常分区。找来一款分区格式化软件Smart Fdisk,用启动盘启动电脑后,进入盘符A:,运行该软件的执行文件SFdisk.EXE;然后删掉(DEL)原有分区,算出坏道在硬盘上的所在位置。如本例中,先建立1990M的基本分区,快速格式化后并激活它,然后再把坏道处分出约50M的逻辑分区,再将所剩的硬盘空间作为一个逻辑区后用快速格式化功能将其快速格式化;最后再将那个约50M的坏道所在的区删除(DEL)掉就是了。然后重启,一个有严重物理坏道的硬盘就很快被修好了,以后磁头再也不会去读那些被删除了的坏道区了。

 方法二:用Windows系统自带的Fdisk分区。例如一块1G的硬盘,在格式化到10%时不能顺利通过,这时按Ctrl+Break强行终止,运行Fdisk建立一个90MDOS分区为C盘,然后再建立一个20M逻辑盘D,再将余下的800M建立一个逻辑盘E。退出Fdisk再运行 format E:,如果格到10%时又遇到阻碍,这时用Fdisk再建立一个88ME盘、10MF盘,余下的790M作为G盘。继续重复上面的操作,直到完成。然后,运行Fdisk10MDF盘删除,这时余下的就是没有坏道的好盘了。

  方法三:同理,用PartitionMagicDiskManager等磁盘软件也可完成这样的工作。如PartitionMagic分区软件,先用PartitionMagic4中的“check”命令或Windows中的磁盘扫描程序来扫描磁盘,算出坏簇在硬盘上的位置,然后在 Operations菜单下选择“Advanced/bad Sector Retest”;把坏簇所在硬盘分成多个区后,再把坏簇所在的分区隐藏,以免在Windows中误操作,这个功能是通过Hide Partition菜单项来实现的。这样也能保证有严重坏道的硬盘的正常使用,并免除系统频繁地去读写坏道从而扩展坏道的面积。

  系统显示“TRACK 0 BADDISK UNUSABLE”,意思为“零磁道损坏,硬盘无法使用”或用磁盘扫描程序扫描其它硬盘时其0扇区出现红色“B”。硬盘0扇区损坏,是大家比较头痛的故障,一般人往往将出现这样故障的硬盘作报废处理。其实合理运用一些磁盘软件,把报废的0扇区屏蔽掉,而用 1扇区取而代之就能起到起死回生的效果,这样的软件如Pctools9.0NU8等。

  方法一:我们就先以Pctools9.0为例来作说明。一块2.1G硬盘出现上述故障,用盘启动电脑后,运行Pctools9.0目录下的 DE.EXE文件。接着选主菜单Select中的Drive,进去后在Drive type项选Physical,按空格选定,再按Tab键切换到 Drives项,选中hard disk,然后OK回车后回到主菜单。打开Select菜单,这时会出现Partition Table,选中进入后出现硬盘分区表信息。该硬盘有两个分区,找到C区,该分区是从硬盘的0柱面开始的,那么,将1分区的Beginning Cylinder0改成1就可以了,保存后退出。重新启动电脑后按Del键进入COMS设置,运行“IDE AUTO DETECT”,可以看到CYLS782变成781。保存退出后重新分区格式化该硬盘,使其起死回生。

  方法二:诺顿NU8.0也较好用。例如一块1.28G硬盘出现0磁道损坏故障,进入NU8工具包目录,运行其主程序NORTON.EXE,然后可先选 “补救盘”RESCUE选项对该硬盘的引导区、分区表等信息进行备份。接着选择“磁盘编辑器DISKEDIT”,成功运行后选“对象OBJECT”,选 “分区表”后可见本硬盘的参数如下:面SIDE0-63,簇CYLINDER0-255,扇区SECTOR1-63,其主引导记录和分区表信息就应该在001扇区。我们要做的事就是把其C盘的起始扇区从001扇区改为011扇区,移动光标手工修改即可。另外需要说的就是,改动数值要根据具体情况而定。最后存盘后退出重启电脑,用format命令格式化硬盘即可正常使用了。需要特别留意的是,修好后的硬盘一定不要再用DOS下的Fdisk 等分区工具对其进行重新分区操作,以免其又改变硬盘的起始柱面。

  如果以上各招都不见效,那么就得使用主板自带的硬盘低格程序或硬盘厂家随盘赠送的低格程序如DMLformat等对硬盘全盘进行低级格式化处理了,它可对硬盘的一些坏道进行重新整理排除。

三、如何正确使用才能减少坏道的发生

 

  上面说了那么多,都有点亡羊补牢之嫌,而正确使用好硬盘才是减少硬盘坏道发生、提高硬盘使用寿命的最好方法。

  1.硬盘在工作时不能突然关机

  当硬盘开始工作时,一般都处于高速旋转之中,如果我们中途突然关闭电源,可能会导致磁头与盘片猛烈磨擦而损坏硬盘,因此要避免突然关机。关机时一定要注意面板上的硬盘指示灯是否还在闪烁,只有在其指示灯停止闪烁、硬盘读写结束后方可关闭计算机的电源开关。

 

  2.防止灰尘进入

  灰尘对硬盘的损害是非常大的,这是因为在灰尘严重的环境下,硬盘很容易吸引空气中的灰尘颗粒,使其长期积累在硬盘的内部电路元器件上,会影响电子元器件的热量散发,使得电路元器件的温度上升,产生漏电或烧坏元件。另外灰尘也可能吸收水分,腐蚀硬盘内部的电子线路,造成一些莫名其妙的问题,所以灰尘体积虽小,但对硬盘的危害不可低估。因此必须保持环境卫生,减少空气中的潮湿度和含尘量。切记:一般计算机用户不能自行拆开硬盘盖,否则空气中的灰尘进入硬盘内,在磁头进行读、写操作时划伤盘片或磁头。

 

  3.要防止温度过高

  温度对硬盘的寿命也是有影响的。硬盘工作时会产生一定热量,使用中存在散热问题。温度以2025℃为宜,过高或过低都会使晶体振荡器的时钟主频发生改变。温度还会造成硬盘电路元器件失灵,磁介质也会因热胀效应而造成记录错误。温度过低,空气中的水分会被凝结在集成电路元器件上,造成短路;

 

  湿度过高时,电子元器件表面可能会吸附一层水膜,氧化、腐蚀电子线路,以致接触不良,甚至短路,还会使磁介质的磁力发生变化,造成数据的读写错误;湿度过低,容易积累大量的因机器转动而产生的静电荷,从而烧坏CMOS电路,吸附灰尘而损坏磁头、划伤磁盘片。机房内的湿度以4565%为宜。注意使空气保持干燥或经常给系统加电,靠自身发热将机内水汽蒸发掉。另外,尽量不要使硬盘靠近强磁场,如音箱、喇叭、电机、电台、手机等,以免硬盘所记录的数据因磁化而损坏。

 

  4.要定期整理硬盘上的信息

  在硬盘中,频繁地建立、删除文件会产生许多碎片,碎片积累多了,日后在访问某个文件时,硬盘可能会花费很长的时间,不但访问效率下降,而且还有可能损坏磁道。为此,我们应该经常使用Windows 9x系统中的磁盘碎片整理程序对硬盘进行整理,整理完后最好再使用硬盘修复程序来修补那些有问题的磁道。

 

  5.要定期对硬盘进行杀毒

  现在的病毒攻击范围越来越广泛,而硬盘作为计算机的信息存储基地,通常是其攻击的首选目标。每年的426日令每位电脑使用者都心有余悸,笔者单位上的几只硬盘就惨遭过CIH的攻击。所以,为了保证硬盘的安全,我们应该注意利用最新的杀毒软件对病毒进行查杀,同时要注意对重要数据进行保护和经常性的备份。

 

  6.用手拿硬盘时要小心

  在日常的电脑维护工作中,用手拿硬盘是再频繁不过的事了。也许这最常见的事情,最不能引起我们的注意。其实,用手拿硬盘还是有学问的,稍有不慎也会使硬盘“报废”的,因此我们在用手拿硬盘时一定要做到以下两点:

  ①要轻拿轻放,不要磕碰或者与其他坚硬物体相撞;

  ②不能用手随便地触摸硬盘背面的电路板。这是因为在气候干燥时,人体通常带有静电,在这种情况下用手触摸硬盘背面的电路板,则人体静电就可能伤害到硬盘上的电子元器件,导致硬盘无法正常运行。

  因此,我们在用手拿硬盘时应该抓住硬盘两侧,并避免与其背面的电路板直接接触。有些类型的硬盘会在其外部包上一层护膜,它除具备防震功能外,更把电路板保护其中,这样我们就可以不用担心什么静电了。

 

  7.尽量不要使用硬盘压缩技术

  我们以前在硬盘空间不大时,总是想方设法节省硬盘空间,例如常见的措施是通过DoublespaceDrvspace命令来压缩硬盘空间。但当压缩卷文件逐渐增大时,这种方法就有一个很明显的缺点,那就是硬盘的读写数据大大减慢了。随着硬盘技术的飞速发展,磁盘的容量也是节节攀高,目前市场上流行的硬盘空间都在20G左右,现在很难再出现以前那种硬盘空间不够用的情况了,所以我们也没有必要再使用硬盘压缩技术了。

 

  8.在工作中不能移动硬盘

  硬盘是一种高精设备,工作时磁头在盘片表面的浮动高度只有几微米。当硬盘处于读写状态时,一旦发生较大的震动,就可能造成磁头与盘片的撞击,导致损坏。所以不要搬动运行中的微机。在硬盘的安装、拆卸过程中应多加小心,硬盘移动、运输时严禁磕碰,最好用泡沫或海绵包装保护一下,尽量减少震动。

 

  9.使用塑料或橡皮来消除硬盘噪音

  在硬盘转速相对较高的情况下,如果硬盘被固定在金属托架上或者放置不当时,一旦接通电源,硬盘就有可能出现比较强烈的震动,时间一长,就有可能损坏硬盘的磁头或者划伤硬盘的磁道。为了消除噪音,我们可以利用硬盘上靠近四个角的安装螺钉孔,用弹力大、质地好的橡皮筋将硬盘悬吊在机箱内;如果硬盘是水平放置的,我们也可以利用弹性和尺寸适当的橡皮垫或橡皮柱垫在硬盘下面,以便达到减震的目的。这里要注意的是,我们选用橡皮筋悬吊时,应选取质量好、弹力大且有丝线包裹的那种,最好选用服装上使用的有编织物包裹的橡皮筋,以免橡皮筋失效后发生意外。适度拉紧橡皮筋,并注意安装过程中不要使橡皮筋受伤。 

 

三十:详谈SCSI硬盘

 

 

SCSI概述

  SCSI(Small Computer System Interface)单纯的从英文直译过来叫做小型电脑系统接口,这是一种专门为小型计算机系统设计的存储单元接口模式,它是在1979年由美国的施加特(Shugart)公司(希捷的前身)研发并制订,并于1986年获得ANSI(美国标准协会)承认。SCSI从发明到现在已经有了十几年的历史,它的强大性能表现使得许多对性能要求非常严格的计算机系统采用。SCSI是一种特殊的总线结构,可以对计算机中的多个设备进行动态分工操作,对于系统同时要求的多个任务可以灵活机动的适当分配,动态完成。这个功能是IDE设备所望尘莫及的。也正是由于SCSI拥有这些出众的优点,使得SCSI能够在专业应用中占据绝对的主导地位。在这么多年中,SCSI并没有停足不前,面对IDE设备的强大挑战,SCSI也在不停的向前发展。

 

  SCSI的发展

  在20世纪90年代初,SCSI接口发展为SCSI2,也就是我们常说的Fast SCSIFast SCSI是通过提高同步传输时的频率使数据传输速率从原有的5MB/s提高为10MB/s,在Fast SCSI之后又出现了可以支持16位并行数据传输的Wide SCSI(原来的SCSIFast SCSI标准均为8位并行数据传输),将数据传输率再提高为20MB/s。也正是因为这个原因,原有的只支持8位并行数据传输的SCSI被称为Narrow SCSI

  到了1995年,硬盘技术的发展到了一个新的高度,面对日益强大的IDE设备,更为高速的SCSI接口SCSI3诞生了。SCSI3俗称Ultra SCSI(数据传输率20MB/s),当使用16位传输的Wide模式时,数据传输率更高达40MB/s。也就是这个时期,“高端、高速、高性能惟有SCSI”成为了人们的一种思维定式,大家渐渐的清楚认识到了SCSI的威力所在。

  时间转到了1997年,为了对抗IDE设备的强大新生力量Ultra ATA标准,不甘示弱的SCSI阵营也于1997年中推出了新的Ultra2 SCSI规格(Fast40),目前已有多种SCSI硬盘支持Ultra 2 SCSI。不过,采用LVD(Low Voltage Differential,低压差动)传输的Ultra2 SCSI难以与原有的低速设备兼容,因此现阶段个人用户主要接触到的还是Ultra(Wide)SCSI接口的设备。另外,在19989月,数据传输率高达160MB/sUltra160 SCSI(Wide模式下的Fast80)规格已正式公布。可是最近,更为高速的Ultra320 SCSI(Wide模式下的Fast160)出现了,新一代SCSI硬盘将对应这一最新的硬盘接口。

 

  SCSI的接口类型

  接口类型是指该SCSI硬盘与电脑主机之间的连接方式或类型。与IDE硬盘相比,SCSI硬盘接口标准更高、读写速度更快、数据缓存更大、电机转速更高、寻道时间更短、CPU占用率更低并且拥有自己独立的I/O Proccessor;所有这些特性都注定SCSI硬盘是硬盘中的速度之王。

  SCSI规范发展到今天,已经是第六代技术了,从刚创建时候的SCSI8bit)、Wide SCSI8bit)、Ultra Wide SCSI8bit/16bit)、Ultra Wide SCSI 216bit)、Ultra 160 SCSI16bit)到今天的Ultra 320 SCSI,速度从1.2MB/s到现在的320MB/s有了质的飞跃。目前的主流SCSI硬盘都采用了Ultra 320 SCSI接口,能提供320MB/s的接口传输速度。

  光纤通道作为SCSI的一种替代的连接标准的解决方案目前正在被开发和使用。毋庸置疑,光纤通道是三种接口中传输速度最高的,它利用光的全反射原理进行传输,其信号失真率小。由于其带宽大,在光纤的每个结点都可以达到100Mb/s,而且可以叠加到1Gb/S,之间不受任何干扰,传输速度高。同时,光纤通道提供了多种增强的连接技术,服务器系统可以通过光缆远程连接,最大可跨越10公里,每个光纤仲裁环路最多可连接126个设备。由于光纤不需要终结器,同时它支持网络设备的连接,所以它比SCSI电缆连接更容易,但其连接技术较难实现。同时由于光纤设备的代价较高,所以目前还没有光纤通道的硬盘,FC(光纤通道)RAID适合磁盘阵列柜连接,在阵列柜上将光纤通道和SCSI转换,而阵列柜中只需要用SCSI硬盘进行连接即可,从而可降低成本。

 

  SCSI VS IDE

  1、性能表现

  SCSI:性能表现出众,由于SCSI控制器上有一个相当于CPU功能的控制芯片,能够处理大部分工作(能够部分降低系统CPU占用率)

  IDE 整体性能表现一般,CPU占用率较SCSI明显高。

  由于市场定位问题,SCSI产品档次普遍较IDE产品为高,例如转速、缓存、数据传输率等。

 2、价格因素

  由于SCSI主要针对商业用户专业应用,外围设置比较复杂,所以SCSI一向是高价格的代名词。IDE产品价格比较低廉,主要针对桌面型电脑应用。

 3、易用性

  SCSI:由于产品的构造原因,SCSI硬盘的使用比较复杂,而且因为SCSI ID和总线终结器设置错误容易引起各种问题,问题的原因比较专业,一般用户难以解决。

  IDEIDE设备仅有主、副设备之分,在同一数据线上只有两个设备,只要正确设置就不会出现问题,技术含量相对于SCSI低,一般用户可以自行解决故障问题。

  4、产品扩展功能

  SCSI:扩展能力极强, 一条通道上最多可以连接15个设备(控制卡本身占用一个设备空间,也就是剩下14个空间可以接SCSI设备),双通道就是30个。

在实际的应用中选择SCSI还是IDE,关键在于你的需求,如果你只是一个普通的电脑用户,你完全不用考虑SCSI设备。但是换句话说,如果你使用计算机来做视频捕捉、影像编辑、数据处理等要求大量磁盘数据输入/输出的工作,相信SCSI绝对是你的上上之选,采用SCSI设备意味着稳定、高速,在这种需求的情况下选用廉价却又相对低性能的IDE硬盘是得不偿失的。

 

 SCSI硬盘到底好在哪里:

  在接口速度方面:

  SCSI(Small Computer System Interface,小型计算机系统接口)原是一种广泛应用于小型机上的高速数据传输技术,现在越来越多地出现在PC服务器上,SCSI接口正在成为PC服务器的标准接口。

  而IDE接口则是普通PC的标准接口。早期IDE接口的数据传输率非常低,从PIO 0模式到UDMA33UDMA66UDMA100,直至最新的ATA/133标准,理论上的数据传输率只达到133MB/s。采用Ultra WIDEUltra 2 WIDEUltra 160/m标准的SCSI接口速度分别可以达到40MB/s80MB/s160MB/s,现在Ultra 320标准已经确定,数据传输率已经达到了320MB/s

 

 在转速方面:

  硬盘转速是决定传输性能的一个关键因素。当主流IDE硬盘的转速在5400rpm时,SCSI硬盘的转速就已经达到7200rpm,而现在IDE硬盘转速提高到7200rpm时,SCSI硬盘的转速早已高达15000rpm了。高转速意味着硬盘的平均寻道时间短,能够迅速找到需要的磁道和扇区,所以在转速上IDE硬盘已经同SCSI硬盘无法相提并论了。

 

  在缓存容量方面:

  缓存容量也是影响硬盘性能的重要因素之一。SCSI硬盘一般都配置了容量相对较大(8MB甚至更多)的缓存,用来解决硬盘与内存之间的传输速度瓶颈问题。同时,SCSI硬盘采用了巨型磁阻磁头(GMR)技术,其读、写分别由不同的磁头来完成,大大提高了硬盘的速度。

  而IDE硬盘的缓存容量则比较小,一般为2MB,虽然现在也出现了8MB缓存的IDE硬盘,提高了一些IDE硬盘的性能,但是由于IDE硬盘的先天不足,所以其性能没有得到显著的提升。

 

  在CPU占用率方面:

  比较SCSI硬盘和IDE硬盘的CPU占用率,可以发现SCSI硬盘具有相当的优势。SCSI硬盘可通过独立的、高速的SCSI卡来控制数据的读写操作,大大提高了系统的整体性能。

  而IDE硬盘没有专用的数据处理芯片来担当数据处理重任,所以对CPU的占用比较多,比如当保存一个比较大的Word文件时,您就会发现计算机停顿一下,这是因为CPU处理数据的结果。

 

  在多任务方面:

SCSI支持多任务,表现在它允许对一个设备进行数据传输的同时,另一设备对其进行数据查找,这在如网络服务器系统中非常重要得,因为它们经常需要同时处理许多并行请求,此时如果存储系统不支持多任务性,那存储系统都不知道该去响应谁的请求了。

 

  在扩展性方面:

  SCSI的扩展性要比IDE好得多。一般每个IDE系统可有两个IDE通道,总共连4IDE设备,使用比较特殊技术的主板也只能最大支持8个设备。而SCSI接口可连接7~15个设备,比IDE要多很多。现在IDE只有硬盘和光驱两类设备,SCSI则多得多,比如扫描仪、打印机等。

 

  IDE的电缆长度大约为45cmSCSI则可以达到1.5~12m,甚至更长,安装的自由度高了很多。由于SCSI设备的中断共享,即只由SCSI卡占用一个中断,连接在其上的设备由SCSI卡提供ID地址。因此使中断得到了扩展,解决了出现中断冲突的问题。

 

  在热插拔特性方面:

  SCSI硬盘支持热插拔的硬盘安装方式,可以在服务器不停机的情况下拔出或插入硬盘,操作系统可自动识别硬盘的改动。这种技术对于24小时不间断运行的服务器来说是非常必要的。当然并不是所有的SCSI硬盘都支持热插拔,只有符合热插拔标准的SCSI硬盘才可以实现热插拔。

 

  而没有这种特性的IDE硬盘则不同了,在不停机的情况下,谁敢把IDE硬盘拔出来再插进去?

  通过以上介绍,您现在知道服务器为什么要用SCSI硬盘了吧?不过,需要说明的是:SCSI硬盘的价格较贵,同样容量的SCSI硬盘价格会比IDE硬盘贵80%以上,所以SCSI硬盘主要应用于中、高端服务器和高档工作站。

 

SCSI参数表:

规格

通道宽度 传输速率 接口类型(外置)

scsi1 8 4mbs 50针,分两排排列

scsi2 8 1020mbs 50针,分两排排列

wide scsi 16位或32 1020mbs 68针,分两排排列

fast scsi 8 10mbs 68针,分两排排列

ultra scsi 8 20mbs 80针,分两排排列

scsi3ultra wide scsi 16 40mbs 68针,分两排排列

ultra 2 scsi 8 40mbs 80针,分两排排列

wide ultra 2 scsi 16 80mbs 68针,分两排排列

ultra 160 scsi 16 160mbs 50针(ultra scsi)或者68针(lvd scsi

ultra 320 scsi 320mbs

三十一:主流服务器硬盘技术介绍

 

 

不可否认,这两年硬盘技术发展非常快,硬盘的性能得到较大幅度的提升,从让整机的系统性能得到一定改善。硬盘低下的性能还是拉低了整体性能,瓶颈还是没有得到突破,要提升硬盘的性能,只能从如下的一些方面着手。

  1.采用先进的制造工艺,提高磁头的信噪比,提高单碟容量,增加硬盘整体容量。

  2.采用新技术,提高主轴电机转速,从而减小硬盘的平均寻道时间,加快硬盘数据传输速度。

  3.采用更先进的硬盘附加技术,以使硬盘的工作稳定性及数据完整性与安全性提高到一个新的高度,延长硬盘使用寿命。

  这里面读写磁头的作用最大,无论增加硬盘容量还是提升数据传输速率,都离不开磁头技术的发展,数据的读写都是通过磁头来完成的。早期的磁头属于磁电感应式,读写都是同一个磁头,读写合一的磁头设计上比较简单,成本较低。但是由于读、写操作的不同,这种二合一磁头就必须要同时兼顾到读/写两种特性,对磁盘的信号读取或者写入的时候有较大的偏差,而且盘片上磁道很密集的时候,它就没有办法进行操作,导致单碟容量上不去。根据这个原因,后面的磁头技术发展开始将读写磁头进行分离,这样就有两个磁头,一个负责读取,一个负责写入。MR(磁阻磁头技术)磁头就是采用这种分离式的磁头结构:写入磁头仍采用磁感应磁头,而MR磁头则作为读取磁头磁阻,这样便可以得到更好的读/写性能,而且对磁道的磁信号感应很敏锐,磁道间距离可以很小,增加磁道数量,这样单碟容量上得到突破。不过随着单碟容量的不断增加,终于到了MR磁头的读取极限,于是GMR(巨磁阻磁头技术)磁头诞生了,近两年的硬盘磁头几乎全部采用GMRGMR磁头技术是在MR的基础上开发的,它比MR具有更高的灵敏性。今后的发展只能说GMR随着纳米技术的开放,它的应用会更上一层楼,目前在研究的纳米磁记录材料粒径为16nm的超微铁粉的矫顽力(HC)比块状铁的HC1000倍,如果用(23)nm尺寸的γ Fe2O3作存储器,将比现有的磁介质的存储器密度提高1万倍,而且可以获得更高的HC,更高的信噪比(后面测试中会有介绍)。而纳米巨磁阻(GMR)材料它与高温超导类似,利用GMR可使计算机磁盘存储能力提高30倍,即可使每平方英寸计算机磁盘信息存储能力增加到100亿位,GMR技术前途是光明的。

 

目前主流的硬盘技术

1RAID(Redundent Array of Inexpensive Disks)磁盘阵列技术

  RAID实际上可以理解成一种使用磁盘驱动器的方法,它将一组磁盘驱动器用某种逻辑方式联系起来,作为逻辑上的一个磁盘驱动器来使用。这种技术的优点是成本低、功耗小、传输速率高,可以提供容错功能、安全性更高,以及比起传统的大直径磁盘驱动器来,在同样的容量下,价格要低许多。

2PRML(Partial Response Maximum Likelyhood,部分响应完全匹配)读取通道技术

  PRML技术简单的讲就是将硬盘数据读取电路分成两段“操作流水线”,流水线第一段将磁头读取的信号进行数字化处理然后只选取部分“标准”信号移交第二段继续处理,第二段将所接收的信号与PRML芯片预置信号模型进行对比,然后选取差异最小的信号进行组合后输出以完成数据的读取过程。PRML技术可以降低硬盘读取数据的错误率,因此可以进一步提高磁盘数据密集度。PRML技术的普通采用,使硬盘的容量、速度、可靠性都有了不同程度的提高。  

  3S.M.A.R.T.(Self-MonitoringAnalysis and Reporting Technology)技术

  由于硬盘的容量越来越大,为了保证数据的安全性,硬盘厂商都在努力寻求一种硬盘安全监测机制,S.M.A.R.T.技术便应运而生。S.M.A.R.T.即“自我监测、分析及报告技术”。它可以监控磁头、磁盘、电机、电路等部件,由硬盘的监测电路和主机上的监测软件对被监对象的运行情况与历史记录和预设的安全值进行分析、比较,一旦出现安全值范围以外的情况,它就会自动向用户发出警告。而更先进的技术还可以自动降低硬盘的运行速度,把重要数据文件转存到其它安全扇区,通过S.M.A.R.T.技术可以对硬盘潜在故障进行有效预测,提高数据的安全性。

 4ATA/100技术

  对于IDE市场,世纪末可以说是Ultra ATA/66的天下,它支持最大的硬盘外部数据传输率为66.7MB/s。到了2000年昆腾公司联合英特尔等芯片组巨头共同推出了ATA/100标准,在理论上它支持的最大硬盘外部数据传输率为100MB/s,同时在处理器厂商、芯片组厂商、主板厂商及硬盘厂商的努力下,ATA/100成了硬盘新技术的主角。但是硬盘的内部传输率就是影响硬盘性能大幅提高的瓶颈所在,尽管硬盘的内部传输率也正在不断的提高,可目前最高也只能达到45MB/S,这就影响了硬盘整体速度的发挥。

  需要指出的是,ATA/100虽然需要相应主板的支持,还使用了单独的80芯接口线缆,但是它可以完全向下兼容,能在ATA/33ATA/66等不同模式下使用。而且接口同样包含CRC(Cyclic Redundancy Check,循环冗余校正)特性,这能增加传输数据的完整性和可靠性,同时它能检测到数据传送中的错误。

5、数据保护与震动保护技术

  硬盘非常怕震动,不管电源是否已经启动,只要硬盘受到了撞击或震动,或多或少总有数据受到一定程度的损伤,如果处于运转状态的硬盘受到震动或撞击,所造成的伤害会更大。在这方面,原昆腾公司(已被迈拓公司并购)DPS(Data Protection System,数据保护系统)SPS(Shock Protection System)技术、西部数据公司的Data SafeGuard(数据卫士)技术、IBM公司的DFT(Disk Fitness Test)、迈拓公司的MaxSafeShockBlock以及希捷公司的SeaShield技术使得硬盘可以承受较高g数的冲击,这种技术可以把硬盘因冲击而造成的损害降到最低的程度,能够对硬盘中的数据有一个很好的保障,大大提高了数据的完整性与可靠性。

6、厂商独特技术

  为了增强自己产品的市场竞争力,很多厂商在自己的硬盘中增加了独特的技术来提升硬盘的质量:

  (1)西部数据公司的数据卫士(Data Lifeguard)技术

  西部数据的硬盘里多了一个“Data Lifeguard”技术,它实际上运用了S.M.A.R.T.技术。简单地说,Disk Lifeguard在硬盘持续开机八小时后,硬盘本身就自动地扫描侦测硬盘内部,如果遇到可能快要产生坏磁区的部分时,就赶快把些磁区上的数据转移到状况良好的磁区上面,并且做好数据在硬盘上所需的连接。独特之处在于Data Lifeguard的所有工作都是硬盘本身就可以启动和执行的,不需要主板或其它工具程序配合,所以用户不需要安装额外的工具软件,只要硬盘的电源开着,每隔八个小时Data Lifeguard就会做一次扫描、分析与修复的动作。并且Data Lifeguard会在硬盘处于Idle(硬盘15秒钟没有任何动作)状态下才会工作,一旦Data Lifeguard准备开始扫描、分析与修复的动作时,如果硬盘还有其他的工作需要完成时,Data Lifeguard就会往后延长15分钟再开始工作,所以外面不必担心这个功能会影响到硬盘的工作效率。

  (2)原昆腾公司的DPS技术

  DPS(Data Protection Sydtem)是原昆腾公司提出的另一项新技术,它可以让用户确定自己的硬盘是否真正发生了问题。如果你觉得硬盘有些奇怪的表现,比如不正常的声音、速度突然变慢的时候,就可以用软盘开机并运行DPS程序,让它帮你测试一下硬盘有没有问题。这时它会检查硬盘的S.M.A.R.T.数据缓冲区,以及其它基本的随机检查测试,而最重要的是所有的测试绝对不影响到硬盘里面所储存的数据。有了这个工具,我们就可以判定硬盘是否真的需要送去修理了。

  (3)迈拓公司的MaxSafeShockBlock技术

  MaxSafe是迈拓公司的独特技术之一,该技术提供了ECC错误修正码(Error Correction Code)功能。所谓的ECC是指以一种复杂的编码算法,当传输一个数据时,额外采用几个位元来当成错误修正的判别码,一旦数据在传输的过程当中出现了错误,就可以通过一个错误修正码来修复不正确的数据,确保数据的正确性。

  ShockBlock是迈拓新一代硬盘所采用的另一项新技术,它强化了连接读写磁头的钢板的刚性,并且读写磁头比原来的读写磁头轻40%,这两种新设计的目的就是在于尽量降低读写磁头弹离碟片的可能性,如果读写磁头没有弹离碟片,就不会有碟片被读写磁头敲击而产生屑片的情况发生,从而延长了硬盘的使用寿命。

4IBM公司的Predictive Failure Analysis (PFA)

最后谈谈我们自己的预测故障分析技术Predictive Failure Analysis (PFA)PFV技术对于保护用户的数据具有独到的优势和帮助。可靠性预测技术的产生起因于人们普遍意识到保护硬盘上存储的关键性信息的重要性。由于对系统存储能力的要求越来越高,多磁盘阵列系统也开始出现,因此该行业的领导者们意识到建立一个早期预警系统至关重要,这样才能保证在故障即将发生之前,有足够的时间备份数据。IBM公司的预测故障分析(PFA)技术,对包括磁头飞行高度在内的几个属性进行测量,以此来预测故障,一旦硬盘探测到某一属性如飞行高度已退化,就会向主机发出一条有可能发生故障的通知。收到通知后,用户就可采取措施保护数据。

 

三十二:高性能服务器硬盘选购技巧

http://bbs./viewthread.php?tid=2917105&sid=9Ywr4C

 

为了满足网络应用不断增长的性能需要,我们通常增加新服务器个数,分担业务,提高系统工作性能,即横向扩展。其实也可以通过提高现有服务器的配置来提高服务器的整体性能,即纵向扩展——因为服务器部件的选配对服务器的性能至关重要。而直接存储数据的硬盘更是影响服务器服务性能的重要一环。

 

  提高服务器性能的方法就是寻找制约服务器性能的瓶颈在哪。不同应用可能存在的瓶颈是不同的,有的要重点考虑处理器、内存,有的要重点考虑硬盘或网络的I/O吞吐能力;那么,在哪些应用环境下需要重点考虑服务器硬盘瓶颈呢?

 

  通讯服务器(messaging/E-mail/VOD):快速的I/O是这类应用的关键,硬盘的I/O吞吐能力是主要瓶颈;

 

  数据仓库(联机事务处理/数据挖掘):大型商业数据存储、编目、索引、数据分析,高速商业计算等,需要具有良好的网络和硬盘I/O吞吐能力;

 

  数据库(ERP/OLTP):服务器运行数据库,需要具有强大的CPU处理能力,大的内存容量来缓存数据,同时需要有很好的I/O吞吐性能;

 

  其他应用:应用集中在数据查询和网络交流中,需要频繁读写硬盘,这时硬盘的性能将直接影响服务器整体的性能。

 

  影响硬盘的因素

 

  谈到硬盘的指标参数,首先就应提到硬盘的接口标准。当今主流硬盘的接口界面有两种:EIDESCSI,当然此外还有IEEE 1394接口、USB接口和FC-AL(FibreChannel-Arbitrated Loop)光纤通道接口的产品,但是很少见。现在几乎所有的微机普遍采用基于Ultra DMA/33/66/100标准的IDE接口的硬盘,它的优势在于能提供较低价格,普及率很高。

 

  同时,也有部分低端服务器采用了IDE硬盘,目前,几乎所有服务器主板都集成了IDE控制器,但在中高端服务器中还只是普遍用来连接低速外设IDE光驱,而硬盘一般采用SCSI接口标准,如浪潮英信服务器就普遍采用了Ultra160 SCSI硬盘,提供更高的硬盘吞吐能力。SCSI接口硬盘有着极低的CPU占用率、支持更多的设备和在多任务下工作的优势明显等优点,更适合于服务器应用的需求,当然SCSI硬盘价格要高得多。

 

  然而,硬盘的数据传输系统之瓶颈不在于PCI总线或是接口速率上,而在硬盘本身,这是由硬盘机械部分与结构设计等诸多因素造成的。

 

  衡量硬盘的指标

  衡量硬盘性能的指标主要包括:

 

  主轴转速

 

  主轴转速是一个在硬盘的所有指标中除了容量之外,最应该引人注目的性能参数,也是决定硬盘内部传输速度和持续传输速度的第一决定因素。如今硬盘的转速多为5400rpm7200rpm10000rpm15000rpm。从目前的情况来看,10000rpmSCSI硬盘具有性价比高的优势,是目前硬盘的主流,而7200rpm及其以下级别的硬盘在逐步淡出硬盘市场。

 

  内部传输率

 

  内部传输率的高低才是评价一个硬盘整体性能的决定性因素。硬盘数据传输率分为内外部传输率;通常称外部传输率也为突发数据传输率(Burstdata Transfer Rate)或接口传输率,指从硬盘的缓存中向外输出数据的速度,目前采用Ultra 160 SCSI技术的外部传输率已经达到了160MB/s;内部传输率也称最大或最小持续传输率(Sustained Transfer Rate),是指硬盘在盘片上读写数据的速度,现在的主流硬盘大多在30MB/s60MB/s之间。由于硬盘的内部传输率要小于外部传输率,所以只有内部传输率才可以作为衡量硬盘性能的真正标准。

 

  单碟容量

 

  除了对于容量增长的贡献之外,单碟容量的另一个重要意义在于提升硬盘的数据传输速度。单碟容量的提高得益于磁道数的增加和磁道内线性磁密度的增加。磁道数的增加对于减少磁头的寻道时间大有好处,因为磁片的半径是固定的,磁道数的增加意味着磁道间距离的缩短,而磁头从一个磁道转移到另一个磁道所需的就位时间就会缩短。这将有助于随机数据传输速度的提高。而磁道内线性磁密度的增长则和硬盘的持续数据传输速度有着直接的联系。磁道内线性密度的增加使得每个磁道内可以存储更多的数据,从而在碟片的每个圆周运动中有更多的数据被从磁头读至硬盘的缓冲区里。

 

  平均寻道时间

 

  平均寻道时间是指磁头移动到数据所在磁道需要的时间,这是衡量硬盘机械性能的重要指标,一般在3ms13ms之间,建议平均寻道时间大于8msSCSI硬盘不要考虑。平均寻道时间和平均潜伏时间(完全由转速决定)一起决定了硬盘磁头找到数据所在的簇的时间。该时间直接影响着硬盘的随机数据传输速度。

 

  缓存

 

  提高硬盘高速缓存的容量也是一条提高硬盘整体性能的捷径。因为硬盘的内部数据传输速度和外部传输速度不同。因此需要缓存来做一个速度适配器。缓存的大小对于硬盘的持续数据传输速度有着极大的影响。它的容量有512KB2MB4MB,甚至8MB16MB,对于视频捕捉、影像编辑等要求大量磁盘输入/输出的工作,大的硬盘缓存是非常理想的选择。

 

  选好服务器硬盘

 

  知道了服务器硬盘的性能指标,下一步自然要依此选择出适合具体应用的服务器硬盘,以提高系统的工作性能。

 

  选用高性能硬盘

 

  由于SCSI具有CPU占用率低,多任务并发操作效率高,连接设备多,连接距离长等优点,对于大多数的服务器应用,建议采用SCSI硬盘,并采用最新的Ultra160 SCSI控制器;对于低端的小型服务器应用,可以采用最新的IDE硬盘和控制器。确定了硬盘的接口和类型后,就要重点考察上面提到的影响硬盘性能的技术指标,根据转速、单碟容量、平均寻道时间、缓存等因素,并结合资金预算,选定性价比最合适的硬盘方案。

 

  RAID技术

 

  冗余磁盘阵列RAID系统提供了比通常的磁盘存储更高的性能指标、数据完整性和数据可用性,尤其是在当今面临的硬盘I/O总是滞后于CPU性能的瓶颈问题越来越突出的情况下,RAID解决方案能够有效地弥补这个缺口。

 

  依据磁盘阵列数据不同的校验方式, RAID技术分为不同的等级(RAID Levels),各有不同的技术特点,读者可以参考有关手册进行选用。

 

  为了更好地提高硬盘的I/O性能,推荐采用RAID技术,根据应用的特点,把被频繁访问读写的硬盘做成RAID0RAID1RAID5;目前,在低端服务器可采用IDE RAID,如浪潮英信NP200;而在中高端服务器,建议采用SCSI RAID控制器,并注意RAID控制器有关技术指标,如CPU类型、通道类型和数目、缓存数量、有无电池后备等;需要注意的是:主板集成的RAID控制器由于本身没有硬盘控制器,而占用了主板上的SCSI硬盘控制器,需要耗费更多的主处理器时间,会使服务器的处理能力受到影响。

 

  热拔插技术

 

  除了从性能指标上评价硬盘,还要考虑到硬盘的故障率、平均无故障运行情况和易维护性。在具体的应用中,首先应选用寿命长、故障率低的硬盘,可降低故障出现的几率和次数,这牵扯到硬盘的MTBF(平均无故障时间)和数据保护技术,MTBF值越大越好,如浪潮英信服务器采用的硬盘的MTBF值一般超过120万小时,而硬盘所共有的S.M.A.R.T.(自监测、分析、报告技术)以及类似技术,如seagateIBMDST(驱动器自我检测)DFT(驱动器健康检测),对于保存在硬盘中数据的安全性有着重要意义。

 

  另外,一旦硬盘损坏,应考虑如何保证数据不丢失,并且减少服务器的宕机时间。 RAID技术可以用来保证数据的可靠性和安全性,通过硬盘的热拔插技术可以保证在更换或维修硬盘的同时,服务器仍然能正常运行可用。目前热拔插技术在中高档服务器中非常普遍,一直也被作为服务器档次的一个重要标志。一般在服务器中采用的热拔插技术的部件有硬盘、电源、风扇、PCI插槽等,而SCSI硬盘也有专门支持热拔插技术的SCA2接口(80-pin),与SCSI背板配合使用,就可以轻松实现硬盘的热拔插。

三十三:服务器数据存储 主流磁盘接口详解

 

 

现在服务器上采用的硬盘接口技术主要有两种,SATASCSI,使用SAS硬盘的产品目前也已经上市,当然还有高端的光纤硬盘,其中前两种是最常见的。下面我们就SATASCSISAS等接口技术作简单介绍。

 

  SATA

  SATA(Serial Advanced Technology Attachment)是串行ATA的缩写,目前能够见到的有SATA-1SATA-2两种标准,对应的传输速度分别是150MB/s300MB/sSATA主要用于已经取代遇到瓶颈的PATA接口技术。从速度这一点上,SATA在传输方式上SATA也比PATA先进,已经远远把PATA硬盘甩到了后面。其次,从数据传输角度来看,SATAPATA抗干扰能力更强。

  另外,SATA所具备的热插拨功能是PATA所不能比的,利用这一功能可以更加方便的组建磁盘阵列。串口的数据线由于只采用了四针结构,因此相比较起并口安装起来更加便捷,更有利于缩减机箱内的线缆,有利散热。

 

  SCSI

  SCSI(Small Computer System Interface)是一种专门为小型计算机系统设计的存储单元接口模式,可以对计算机中的多个设备进行动态分工操作,对于系统同时要求的多个任务可以灵活机动的适当分配,动态完成。

  SCSI规范发展到今天,已经是第六代技术了,从刚创建时候的SCSI(8bit)Wide SCSI(8bit)Ultra Wide SCSI(8bit/16bit)Ultra Wide SCSI 2(16bit)Ultra 160 SCSI(16bit)到今天的Ultra 320 SCSI,速度从1.2MB/s到现在的320MB/s有了质的飞跃。目前的主流SCSI硬盘都采用了Ultra 320 SCSI接口,能提供320MB/s的接口传输速度。

  SCSI硬盘也有专门支持热拔插技术的SCA2接口(80-pin),与SCSI背板配合使用,就可以轻松实现硬盘的热拔插。目前在工作组和部门级服务器中,热插拔功能几乎是必备的。

 

  SAS

  SAS Serial Attached SCSI的缩写,即串行连接SCSI20011126日,CompaqIBMLSI逻辑、MaxtorSeagate联合宣布成立SAS工作组,其目标是定义一个新的串行点对点的企业级存储设备接口。

  SAS技术引入了SAS扩展器,使SAS系统可以连接更多的设备,其中每个扩展器允许连接多个端口,每个端口可以连接SAS设备、主机或其他SAS扩展器。为保护用户投资,SAS规范也兼容了SATA,这使得SAS的背板可以兼容SASSATA两类硬盘, 对用户来说,使用不同类型的硬盘时不需要再重新投资。

  目前,SAS接口速率为3Gbps,其SAS扩展器多为12端口。不久,将会有6Gbps甚至12Gbps的高速接口出现,并且会有2836端口的SAS扩展器出现以适应不同的应用需求。

  总结:

  由于SCSI具有CPU占用率低,多任务并发操作效率高,连接设备多,连接距离长等优点,对于大多数的服务器应用,建议采用SCSI硬盘,并采用最新的Ultra320 SCSI控制器;SATA硬盘也具备热插拔能力,并且可以在接口上具备很好的可伸缩性,如在机架式服务器中使用SCSI-SATAFC-SATA转换接口,以及SATA端口位增器( Port Multiplier),使其具有比SCSI更好的灵活性。对于低端的小型服务器应用,可以采用最新的SATA硬盘和控制器。

  确定了硬盘的接口和类型后,就要重点考察上面提到的影响硬盘性能的技术指标,根据转速、单碟容量、平均寻道时间、缓存等因素,并结合资金预算,选定性价比最合适的硬盘方案。

 

三十四:低端服务器选择单SCSI还是IDE磁盘阵列

http://bbs./viewthread.php?tid=2915240&sid=3SO3do

 

低端服务器选择单SCSI还是IDE磁盘阵列

配置一个低端服务器,存储产品的选择一定要多费一番心思。SCSI磁盘阵列一般是应用在较高端服务器上,出于SCSI磁盘阵列昂贵的价格,配置一个低端服务器选用SCSI磁盘阵列显然是不合理的了。但我们可以只选择单块SCSI磁盘,这样一来就节省了很多资金。目前市场上IDE磁盘阵列的产品很多,而且速度也比较快,价格又较SCSI磁盘便宜很多,得到了部分用户的青睐。但选择IDE磁盘阵列是我们的最合理的解决方案吗?我们到底是选择单SCSI还是选IDE磁盘阵列?对于这个问题不能简单的定下结论。我们从容量与成本 、可靠性、性能、扩展性这几个方面详细的对比分析一下这两类产品的优劣。

 

 容量与成本

  就容量与成本这方面来考虑,IDE磁盘阵列有一点点的优势,因为IDE磁盘阵列可以配置较大的容量而SCSI磁盘在容量方面有一定的上限。但作为低端服务器,如果对磁盘的容量要求不是很高的话,那么IDE磁盘阵列和单SCSI磁盘在容量与成本这方面就不分伯仲了。

 

  可靠性

  上面已经说明在容量想相当的情况下,IDE磁盘阵列和单SCSI磁盘的价格不相上下。这时大家可能就想,选择IDE磁盘阵列是不是更具稳定性呢?其实则不然。众所周知,每一个磁盘驱动器都可以连续工作1百万个小时而不出错。其中连续工作的1百万小时就是我们说得MTBF(平均错误时间),它是用来衡量磁盘性能的一个重要的标准。对于相同类型的磁盘驱动器(例如都是IDE或者都SCSI),我们可以完全用MTBF来衡量它们之间的性能优劣。

 

[img]http://www./upimages/tech/10_2006_4_8_12_21_52.gif[img]

 

  但是IDESCSI并不是同一规格的磁盘驱动器,MTBF的可比性就不一定可靠。通常我们也可以使用平均工作时间和访问比率来衡量磁盘驱动器的性能。对于IDE磁盘,一般每天平均工作11小时,平均每天有132分钟的读写时间;SCSI磁盘可以连续24小时工作,并且平均每天有432分钟的读写时间。

  上述的数据清楚的告诉我们SCSI的可靠性要比IDE高的多。大家不要忘记毕竟IDE硬盘是普遍用于PC机,IDE磁盘的工作强度和服务器SCSI磁盘的工作强度还是不可比拟的。而上述的数据也只是在IDE硬盘平均每天工作11小时所测得的,若把IDE磁盘应用于服务器上,每天在都高负荷下工作24小时,可想而知IDE磁盘发生故障的几率会加大。

  即使组成IDE磁盘阵列,就目前性价比最为合理的RAID5也只是能对一块磁盘发生故障时进行保护。而SCSI磁盘则不同,即使是单块SCSI磁盘,每天24小时工作,其MTBF也可达到1000000小时,其稳定性是不容置疑的。故大家不难看出,出于可靠性的考虑建议大家选用SCSI硬盘。

  性能

  IDE磁盘阵列在数据的读取、存储速度上会比单个SCSI磁盘略胜一筹。不过IDE磁盘阵列的解决方案中,数据的接收,分卷和组装都有CPU来处理。这样就增加了CPU的负担,由于我们配置的是低端服务器,CPU的性能不可能太高,所以我们要尽量减轻CPU的负担。SCSI磁盘可以更少的占用CPU的时钟,SCSI硬盘转速可达15000rpm ,接口速度最高的水平是320MB/s,其转速和接口速度较IDE磁盘高出很多,加上其嵌入了更完善的指令,此时单个SCSI磁盘就是最佳选择了。所以出于性能的考虑建议大家选用SCSI硬盘。

 

  扩展性

  在扩展性方面大家可能考虑的不多,但要是考虑到以后的配置升级,扩展性就相当的重要了。选用IDE磁盘阵列的话,要是以后想进行升级到SCSI磁盘阵列那就完全放弃目前的IDE磁盘,这样的开销很庞大。而在自身IDE磁盘阵列进行升级,升级空间又有一定的局限性而且升级空间不会很大。选用单块SCSI磁盘就不同了,再增加SCSI磁盘就可以升级为SCSI磁盘阵列了,这样一来容量、性能和可靠性都有明显的提高。这比由IDE磁盘阵列升级至SCSI磁盘阵列不仅节省了大量的资金而且需要做的工作也相对简单很多。所以出于扩展性的考虑建议大家选用SCSI硬盘。

  从上面的对比分析可以明确:在低端服务器配置中,无论出于可靠性、性能还是扩展性我们选用单块SCSI磁盘是明智的。

 

三十五:全面认识磁盘阵列柜性能

 

 一个 SCSI 硬盘的平均故障间隔时间〈MTBF, Mean Time Between Failure〉,都在数万小时以上,在正常使用情况下,要坏掉一个硬盘已经很不容易了;在同一系统内,两个磁盘驱动器同时坏掉的机率,更是微乎其微。但是,如果把磁盘驱动器放在布满杀手的环境内,就另当别论了。

 

  构建一个磁盘阵列储存系统,可靠度远比速度来的重要。因此,不但要选一个高性能的阵列控制器,更要慎重地挑一个高可靠度的磁盘阵列柜。因为,宝贵的数据不是存在数组控制器里,而是存放在磁盘驱动器里;而磁盘驱动器又是放在磁盘阵列柜内。所以,要仔细挑选一个可靠的磁盘阵列柜,来当磁盘驱动器的神盾,千万不要挑一个磁盘驱动器杀手!

 

  磁盘阵列柜的设计挑战

 

  由于磁盘驱动器的技术以及传输接口的技术不断的发展,磁盘阵列系统的设计随时都面临新的挑战,以便符合与日俱增的要求。一个优质的磁盘阵列柜,必须在设计阶段,就要考虑到其规格必须符合更大容量、更高转速磁盘驱动器的需求,提供:

 

  稳定、高容量、容错的电源供应系统

  可靠、高性能、容错的冷却系统

  能够克服震动的机械结构

  支持SCA2 热抽换接头之被动背板

  一体成型、无主动组件之磁盘载盒

  数组柜环境监控与警示功能

  直接热抽换且方便的维护操作功能

  最佳的空间利用

  以下我们就针对这些规格和功能,提供一些建议。

  稳定、高容量、容错的电源供应系统

 

  如果各位仔细看看磁盘驱动器的规格书,您会发现磁盘驱动器马达启动时,需要很大的启动电流〈约2A〉,约为平常读写时〈约0.66A〉的 3 ;磁盘驱动器在 SEEK 时,需要很大的瞬间电流〈约2.1A〉,约为读写时〈约0.66A〉之 3 倍。因此,电源供应系统必须能提供足够、稳定之瞬间电流,否则会造成磁盘驱动器无法启动,甚至造成数据写入错误〈此为导致 RAID 磁盘驱动器被 RAID 控制器判定为 Down,但磁盘驱动器送回原厂测试却无故障之原因〉。当磁盘驱动器转速越来越快,SEEK 速度也越来越快时,电源供应器必须提供足够的容量,以因应将来扩充的需求。

  具备容错,热抽换、负载分享之双电源供应器,是不可或缺的,更重要的是,如果电源供应器发生故障,要能不必下螺丝就能热抽换电源供应〈使用螺丝起子解螺丝会造成震动及摇摆,会损害工作中之磁盘驱动器〉。

  有了双电源供应器,更要具备两组电源输入,一个接到市电,一个接到 UPS。如此,无论突然断电,或 UPS 故障,都不会造成 RAID 当机。

  好的电源供应系统,还须具备交流电压与频率自动选择及调整,以适用不同电压及频率,更重要的是,要能克服电压及频率不稳之状况。在用电尖峰时段,市电电压可能降到100伏特以下,而在非用电尖峰时段,市电电压可能升到120伏特以上,因此电源供应系统必须能够容忍这些电压变化,提供磁盘驱动器稳定的电压和电流,否则可能造成磁盘驱动器故障,甚至数据写入错误。磁盘阵列柜的电源供应系统,最好能够提供从85260伏特无段自动调整,如此,无论插到哪种插座,市电品质如何变化,都不会影响磁盘阵列的功能。

 

  可靠、高性能、容错的冷却系统

 

  在许多案例中,我们发现冷却系统设计不完善的磁盘阵列柜,只能装设7200转的磁盘驱动器,若使用10,000 转的磁盘驱动器,系统就会过热。现在,Seagate 已经推出15,0000转的磁盘驱动器了,如何挑选一个具备可靠、高性能、容错之冷却系统的磁盘阵列柜,就更显得重要了。

 一般磁盘阵列柜之设计,在每个磁盘驱动器载具上加装小风扇,整个系统再装数个大风扇,用边吸边吹的方式散热,不但散热效果不好,而且是产生磁盘驱动器故障的潜在因素:它带来的危害有以下这些:

 

  产生大量气流将粉尘吹入系统,污染磁盘驱动器及风扇本身造成故障。

 

  采用一般PC用小风扇,且数量多〈转动机械零件越多,故障机率越高〉,系统可靠度因而巨幅降低?/li>

 

  一旦有一个小风扇故障,相关磁盘驱动器便无法获得足够散热而故障。

 

  一个优质磁盘阵列柜之冷却系统的设计,必须完全符合热力学理论之全方位冷却:热传导、热对流及热辐射之三相散热方式,才能更有效率、可靠度更高:

 

  磁盘驱动器载盒必须采用黑色、高导热系数之金属〈如铝合金〉,并与载盒紧密接触固定,如此可以最快最有效地将磁盘驱动器之热能传导至整个载盒,然后以最大辐射面积与最佳辐射颜色〈黑色〉,将热能辐射至机体内空气中,再以中央系统涡轮抽风机将热空气以对流方式排出

 

  磁盘驱动器载盒不能使用风扇,及其它任何主动组件,以免本身故障而损及磁盘驱动器

 

  系统采用中央抽风排热设计,须使用两个以上之工业用涡轮抽风机〈不可用一般PC用风扇〉,以提高可靠度与排热效率。由于工业用涡轮抽风机本身可以防止轴承被粉尘污染,且抽气效率极高,可将机体内热空气抽出,并在机体内产生很大的相对低压,冷空气便可由经过精密设计之对流孔,均匀地进入机体内,达到最佳对流散热效果。

 

中央系统涡轮抽风机必须具备热抽换功能,且能够自动温控转速,以达到最佳之排热性能与能源使用效率只需一部涡轮抽风机就足以维持系统散热之最低限度。工业用涡轮抽风机之出气口面积只有一般PC用风扇1/10,因此即使有任何风扇因故停止运转,也不致影响整个系统之热对流结构。

 

  防震机械结构

 

  由于磁盘阵列的特性,当存取阵列中的数据时,阵列中所有的磁盘驱动器的磁头,都几乎在同时,往同一个方向SEEK,又几乎同时在相同的位置煞车,其惯性动量非常之大。因此造成很大的震动问题。如果磁盘阵列柜的机械结构不能克服这些震动问题,轻则造成Re-Seek,严重的话,会导致碟面受损,数据遗失。

 

  一个好的磁盘阵列柜的机械结构设计,必须克服上述震动问题:

 

  磁盘驱动器以刚性方式固定于磁盘驱动器载盒〈不使用任何塑料或其它韧性支柱〉:塑料或其它韧性支柱会变成震动的放大器,让磁盘驱动器震得更厉害。刚性方式固定,可以透过经由模态分析〈Model Analysis〉设计之阵列柜,避开自然共振频率〈Natural Resonance Frequency〉以及强迫共振频率〈Forced Resonance Frequency〉,将系统震动降至最低,得到最佳性能,不会因震动造成磁头偏移而需重新寻轨定位 (re-seek)

 

  磁盘驱动器载盒必须为一体成型之刚性合金制造,且紧密稳固地固定在机箱内。如果是以卡榫或螺丝方式接合,其防震效果可想而知,非常不理想。

 

  支持SCA2接口的被动背板

 

  前面提到,磁盘阵列系统最重要的是可靠度,因此所有具备主动组件〈包含电子组件和机械组件〉都必须安装在可热抽换的模块上,以便发生故障时可以随时更换。一般来说,被动组件是不会坏的,除非暴力相向。

 

  磁盘阵列柜中,除了背板〈Backplane〉之外,其它所有模块都可以是可热抽换的。因此,背板上不可以有任何主动组件,以免有任一组件发生故障,必须停机更换,而且,一般来说,使用者是无法自行更换背板的。

 

  磁盘阵列柜背板的另一个重要规格,是必须使用SCA2 接头,以支持热抽换〈Hot-Swap〉。我们都知道,把磁盘驱动器从系统中拔出或插入,会造成很大的突波讯号,可能影响正在工作的Bus,甚至损坏磁盘驱动器接口组件,因此必须要有特殊的设计,来降低并防止突波可能造成的损害。

 

  SCA2 接头的设计,是采用长、中、短等不同长度的接脚,将前期电源和地线、主电源、总线信号线等,依照先后顺序接触〈插入时〉或分离〈拔出时〉,如此可以将磁盘驱动器线路缓慢充电,将其电位提升以降低其与总线间之电位差,以减低突波讯号,保护电子接口组件以及避免干扰工作中的总线。

 

  一体成型,无主动元件的磁盘载盒

 

  在实际的案例中,我们常发现用户把磁盘载盒送修,因为磁盘载盒蜂鸣器一直叫、风扇卡住不转了...,当然,磁盘驱动器也可能因此而毁了〈因为风扇不转而造成磁盘驱动器过热,唉,水能载舟,亦能覆舟〉。这就是磁盘载盒设计不良所造成的。

 

  一个好的磁盘载盒设计,必须没有使用任何可动机械或主动电子组件,亦即,不要有小风扇,也不要任何控制线路。如此,磁盘载盒本身就是金刚不坏之身,不会造成故障,更不会成为磁盘驱动器杀手。

 

  同时,磁盘驱动器的固定方式,也是一门学问。除了前述要将磁盘驱动器直接且紧密地固定在磁盘载盒上,以达到热传导散热之外,磁盘驱动器最好是倒挂式固定。如果采取一般正面式固定,则磁盘驱动器所产生的热,传导至磁盘载盒之后,又辐射出来产生热空气,再往上升,刚好用来烤磁盘驱动器的线路板和组件〈本是同根生,相煎何太急?〉,会加速组件的老化。如果采取倒挂式固定,则传导到磁盘载盒的热,会辐射到磁盘驱动器上部空间,由对流气流带走,不会烘烤到磁盘驱动器线路组件。

 

  为求达到最佳热辐射散热效果,磁盘驱动器载盒之表面,最好漆上黑色,因为黑色是最容易吸收热能,也是最容易辐射出热能的颜色。磁盘驱动器载盒的材质,必须具备高导热系数的特性,如铝合金辨识理想的材料,导热系数高,加工也方便。

 

  而如前述,磁盘驱动器载盒必须是一体成型的刚性金属合金制造,以达到最佳震动克服性能。我们非常不建议采用组合式磁盘载盒,一般这些组合式磁盘载盒,都是由一个架子和一个盒子组成;架子上有风扇和热抽换控制电路,固定在机壳上,再接Cable;磁盘驱动器则装在盒子,透过转接接头连到架子上。如此,不但造成前述震动问题,而且一旦架子的风扇或电子组件故障,就必须停机更换。

 

  阵列柜环境监控与示警功能

 

  磁盘阵列柜中所有主动组件或机械组件,以及内部环境温度,都必须能够监控且有适当的警示和通报功能:

 

  阵列控制器必须能支持S.M.A.R.T.,以便预测可能发生的磁盘驱动器故障。妥善利用S.M.A.R.T. 功能,能够预先准备好备用磁盘驱动器,以便在第一时间把不稳的磁盘驱动器更换掉,如此可以把风险系数降至最低。

 

  环境状态监控器必须能随时监视机柜内部温度,以及控制排设装置转速,以达到最佳冷却及能源利用效率。同时异常状况必须以两种以上方式通报,至少包含在数组柜本身的声音与视觉灯光警示,以及远程通报。

 

  电源供应器的输入与输出,也必须随时监控。同时异常状况必须以两种以上方式通报,至少包含在数组柜本身的声音与视觉灯光警示,以及远程通报。

 

  另外,非常重要的一点是,环境监视控制器本身也是主动组件,也可能发生故障,因此,磁盘阵列柜的环境监控器,必须能够支持热抽换功能。

 

  直接热拔插且方便的维护操作功能

 

  在磁盘阵列柜中,所有可能发生故障的组件,包括主动电子组件、可动机械组件,都必须能够支持热抽换功能。不能抽换的组件,就必须是不会故障的被动组件。

 

  具备可热抽换功能,大家都知道,但是,要如何才能更方便、更安全地作热抽换,可是一门学问。一个提供方便维护、安全热抽换的磁盘阵列柜,至少需具备以下功能:

 

  所有可热抽换的组件,都必须能由外部直接抽换,而不必先移除其它组件,如此才不会造成任何风险。试想,如果一个风扇坏了,你得先把一个电源供应器移除,才能抽换坏的风扇,你必须保证剩下那个电源供应器不会出问题,否则,你就挂了。

 

  所有的热抽换动作,都不需要将手或工具伸进机体内部,去拆解螺丝或拔接头。把工具伸进机体内,可能误触线路造成短路,整个系统可能因此损坏或当机;把手伸入机体内,可能会触电,人一触电,反应是无法预期和控制的,可能会把整个磁盘阵列柜甩到五公尺远。

 

  所有的热抽换动作,都不需要使用任何工具。在操作中的系统上使用工具是非常危险的,用力转螺丝会造成机体摇动,磁盘驱动器会受损;金属工具也可能会造成短路。

 

  所有可热抽换的组件,都不可使用螺丝固定,因为如果不小心,螺丝很可能会掉进机体内,造成短路。如果一定要用螺丝,也要使用具有卡榫的螺丝,在解下后仍然能够安全地卡在组件上,不会有脱落的危险。

 

  最佳的空间利用

 

  在机架式系统中,空间的利用以及散热气流的需求,是非常重要的因素。同样可容纳七台磁盘驱动器,一个只要占 3U 空间的磁盘阵列柜,当然比一个要占 6U 空间的磁盘阵列柜要来得有效率。

 

  要能达到最佳化的空间利用,除了磁盘阵列柜的体积要小之外,散热气流的需求也是决定性因素。一个只应用到单向对流散热方式的磁盘阵列柜,需要很大的气流需求才能达到散热效果,因此既使体积小,也不能在一个机架中装设太多磁盘阵列柜,否则散热气流就会不够。

 

  如果磁盘阵列柜采用高效率的三相散热〈热传导、热辐射、热对流〉系统,就只需要小量的气流,便足以发挥散热效果,因此可以在机架中高密度地装置磁盘阵列柜,大大地提高空间使用效率,当然也大大地降低了成本。这对大型企业、ISP、以及主机代管业者来说,是非常有经济效益的规格。

 

  保护您的数据,要从保护您的磁盘驱动器开始;要保护您磁盘驱动器,就要挑一个可靠、稳定的磁盘阵列柜。要知道您的宝贵数据,不是存在 CPU,也不是存在主机板,也不是存在控制卡,而是存放在磁盘驱动器里。所以,挑选磁盘阵列柜,是件很慎重的事情,千万不要讨价还价,而是要很挑剔地找一个磁盘驱动器的神盾,可别找一个杀手。 

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多