分享

星际旅行的发动机

 在宇宙的原野上 2011-03-28
星际旅行的发动机
五、光帆

作者 萧楠


  不久前刚写了关于光帆的文章《太阳帆船》,那篇文章已经介绍了光压的发现历史以及光帆的发展现状,所以这里就重点介绍对于光帆未来发展的设想,可以让两文互为补充。

  《太阳帆船》一文已经讲述了光是能产生压力的,所以我们可以借助这样的压力来作为推进的动力。在距离太阳比较近的时候,还能利用一些太阳风的推动力,不过光压才是核心推动力,因为太阳风产生的压力还不到光压的0.1%,完全可以忽略(注意:国内读物上说光帆利用太阳风来推动的说法是错误的!)。光帆这样的推动系统不能算发动机,但却是所有介绍未来宇航方式的资料中都会讲述的重要方法。

  由恒星产生的光压带来的推力是非常低的,这意味着利用光帆的航行的起点和终点都必须在太空中,必须由其他的宇航工具送上太空,并在太空中展开。对比而言,前面介绍的离子发动机虽然目前推力很低,但毕竟有能够从星球上起降的发展前景,光帆则永远需要依赖于别的手段。但如果我们将来有了大型的太空站以至太空城市的话,那么光帆用起来就方便得多了。

光帆
太空城市的光帆


  首先要注意的是,为了能够航行并且携带一定的有效载荷,光帆的面积必须非常巨大,才能获得足够大的推力。我们现在所试验的光帆都仅仅几十米宽,但在实际应用中,光帆的尺度需要以公里来计算。而同时,还必须特别薄,以减轻重量,目前看来最适合的物质应该是碳纤维制品,因为碳纤维制成的光帆厚度可以只有几微米,而且这种材料也是少数几种能够承受来自太阳的热和辐射的材料之一。

  光帆的理论基础是,当光被反射的时候,就从光子传递给光帆一个动力产生加速度。被反射的能量越多,获得的动力就越多。也就是说,光帆表面的反射性能越好,其效果就越好。

  自然,在光帆方面的发展重点就是如何进一步寻找这样的可以很大、很薄、很轻、反光性好、而且不会因为陨石的打击而撕裂的材料。

  光帆最大的好处是它们有免费的推进系统,既不需要发动机,也不需要燃料,节省了大量的重量,而且可以长期加速,这两者结合意味着它最终能达到很高的速度。在距离太阳1个天文单位的距离(也就是地球附近),阳光的压力是每平方千米9牛顿,对比起来,航天飞机的推力是要以百万牛顿来计算。但航天飞机很快就把它的燃料用光,由于这个原因,传统的火箭发动机的极限大概是每小时3万英里左右,想再快的话,就必须利用行星的引力来加速。而不用燃料,能够长期加速的光帆飞行器要最终加速到每小时20万英里并不难。也就是说从长期看,光帆一定是更快的,更节省时间,这对于行星际航行,尤其是恒星际航行来说是非常重要的。我们可以用它来完成恒星际的先驱航行任务,虽然即使再发展也难以用它来完成星际间的定期航行。

  利用太阳光的话,缺点很明显,首先是如同上文说的光帆的推重比极其微小,其次是当使用光帆的飞行器远离太阳,阳光的密集度越来越低,压力会越来越小,直到最终可以忽略,也不再对光帆施加压力并产生加速度。

  针对上述弱点,人们从上世纪80年代开始就提出一些办法来解决这些问题。其设想是在绕地球轨道,或者环绕太阳的轨道以至月球上安装一组激光器或者微波发送器,用它们的力量来推动光帆。由于人工的方式可以让能量比阳光集中,所以其效果要大大好于阳光,并且能解决深空航行的问题。美国宇航局最近的研究说这样的飞行器速度能最终达到光速的1/10(大约是每秒3万公里),而有更乐观的观点认为能达到光速的一半。

光帆
光帆


  第一个提出用激光航行的人是Robert Forward,不过他提出的使用一个1000公里的透镜、产生1亿亿瓦特激光、以及1000公里的帆这样的设想虽然很壮观,但实在是缺乏可操作性。所以,这个方案就被其他人进行了修正,把效果降低,但方案变得更现实(尽管还是有些异想天开,比如“仅仅”1百亿瓦特的微波激光)。

  这样航行方式遇到的一个困难就是,激光束在如此遥远的距离上会扩散得很大,这就是为什么Robert Forward要建造巨帆的缘故。而且激光技术必须得到大幅度的发展,以便瞄准数百万公里外的目标。

  微波可以起到同激光同样的效果,不过帆的设计上要有些修改,要改成金属丝网结构,但这个金属丝网的缝隙必须比微波的波长的一半还小。这样的飞行器上放的应该是无生命的机器人以及机器,由于微波在短距离上具有比激光更好的效果,所以可以更快的加速直到进入巡航速度。虽然由于波长比激光大得多从而在远距离上微波不如激光,但微波需要的能量要少于激光,距离我们现在的技术能力更近。

  对于使用微波或者激光来航行的光帆来说,一个挑战就是如何在目标附近停下来并进入轨道。最普遍的建议是使用多重帆,比如使用两级帆,分为内帆和靠外的主帆,这样,让激光照射到靠外的主帆上,然后反射到内帆上,这会让外面的主帆加速远离目标,但和飞船结合在一起的内帆则得到减速,主帆被抛离,小一些的内帆成为主帆并进入轨道。

  如果使用三级帆,甚至可以进行往返飞行,停止的方式和上面一样,到了该返航的时候,第三级则和第二级分离,来自太阳系的激光则从第二级帆反射回第三级从而进入回程。这要求帆具有一点凹面镜的形态,以便让反射的光束更集中。

  另外一个用于停船的更有创造力的思路是,关掉激光束,然后飞船伸出带电的金属线,同恒星的磁场作用,来让飞船转入一个很浅的弧线轨道,最后再把激光束重新打开。

  但是,设想虽然好,但是在实际操作中却要遇到三个重大的问题:

  第一个是激光和微波指向装置必须非常精确,而且随着距离越远,难度越大;
  第二个是飞船只能携带很少的有效载荷;
  第三个,也是最严重的问题是,这样的距离无法和地球这里及时联络,如果遇到什么情况,需要地球这里进行调整的话,根本无法进行。比如,当飞船距离基地只有2光年的距离时,就需要四年多才能调整,其中两年用于无线电波返回基地,两年多(因为要加上这4年中飞船又走的距离)用于调整后的激光到达并产生效果。

  对于不用激光和微波主动加速的光帆飞船来说,问题反而简单,因为速度没那么高,所以在到达临近恒星的时候只要利用那颗恒星的光压减速就可以达到合适的速度,并收起光帆进入轨道,所需要的只是有一个合适的智能系统来完成这一切。

  而对于行星际定期航行,主动加速的方式就可以很有用,前提是我们已经到达目标星球,并在那里也安装一组激光或者微波发送器,这样,就可以建立一个行星际的高速公路。

  从《太阳帆船》到本文,大家已经看到了不少光帆的图,不知道大家注意过没有,所有的图片中帆的形状基本只有两种。

光帆光帆
光帆的两种基本形状


  这和光帆的用于支撑的帆桁有关,如果没有帆桁的支撑,当阳关推动帆的时候帆就会塌下来并缠到飞船上。人们设计出两种方式来稳定帆,并且能转动帆,同时还使帆尽量平展以接受更多的阳光。上图左边是三轴稳定方式(Three Axis Stabilized),右边是旋转稳定方式(Spin Stabilized),很明显,每一个帆叶都是最稳定的三角形。

  三轴稳定方式的名字来自帆桁结构以三维方式来支撑帆体,前两维自然是帆体的二维,第三维则和帆体垂直。将帆的边缘(三角形的两个边缘)同坚硬的帆桁连在一起可以有效防止帆垮掉。下一个要解决的问题是别让帆桁在第三个维度上垮掉,就象被合起来的伞那样。为此要么让帆桁紧密结合在轴心上,要么象下图这样有一个突出的桅杆在第三维上进行加固。

光帆
三轴稳定方式


  旋转稳定方式顾名思义,就是不断旋转,这样,通过离心力让帆展开。这样的好处是帆桁就不必太坚硬,所以帆桁数量虽然多,反而不见得重。旋转稳定方式的帆叶也可以更多,比如下图这样,这是加拿大太阳帆项目的设计图(Canadian Solar Sail Project)。

光帆
加拿大太阳帆设计图,点击图片放大



  磁帆

  这里顺便说说磁帆(Magsail)。磁帆还是很新的概念,由Robert Zubrin和Dana Andrews提出。光帆利用的是光压,而磁帆利用的是恒星风(在我们太阳系自然就是太阳风)。

  磁帆的结构很简单,就是用一个直径几毫米的超导电缆(由于太空中的低温,实现超导很容易)来构成一个环。从而产生磁场偶极(dipole),并在太阳风中航行,它还能通过调整环的方向来产生一些浮力,从而能进行航向控制。

  由于结构简单,磁帆恐怕要比光帆更轻也更便宜。而且也可以象发射激光那样,用粒子加速器向磁帆发射带电粒子,而效率可以比激光好大约6倍。并且,让磁帆减速和机动远远比光帆容易。

  当然,目前存在的技术困难也很多,发展磁帆需要在超导、热控和行星磁场附近的操作方面获得进展。 end
 
星际旅行的发动机
七、对传统化学火箭的改进

作者 萧楠


  经过几十年的发展,传统的化学火箭发动机在结构方面已经趋于成熟,目前对于未来发展方向的预期主要集中于对火箭构成材料以及化学燃料的改进方面。

  在材料方面,发展目的是尽量降低火箭的重量,同时又不降低强度,甚至增加强度。

  科学家们正在探索一种新的技术,它可以使传统的化学火箭变得更加“苗条”。例如有一种像蛛丝一样的材料(是一种超薄的薄膜),可能用于制作天线或光电线路板,以取代现在正在使用的大而重的部件,甚至可以用于建造提供飞船能量的太阳能帆板,使它每平米只有4-6克重。

  一些合成材料,例如像用于碳化纤维网火箭和高尔夫球棒的合成材料,目前已经在保证安全性的条件下,广泛用于宇宙飞船的设计,它可降低飞船重量,但不降低其强度。一种被称为“碳纳米管”的新型碳材料发展很快,最好的合成材料的强度仅是钢材的3到4倍,而碳纳米管则是钢材的600倍。

  兰利研究中心(美国著名的结构和材料研究中心)主任、科学家丹尼斯·布希纳尔解释说:“这个不同寻常的强度来自碳纳米管的分子结构,它们看上去有点像鸡肉卷进了一个四周是碳原子的六角型圆柱”。典型的碳纳米管大约有1.2-1.4纳米(1纳米只有一米的十亿分之一),仅是碳原子半径的十倍。

碳纳米管
碳纳米管


  在上图的碳纳米管中,碳原子的格子像一个悬挂着的钉板。其他的原子和分子可以钉在上面并赋予纳米管特殊的化学、电子或热特性。

材料强度
不同材料的强度比较


  碳纳米管的可拉长强度已经远远超过其他高强度的材料。上图的四个图柱(由左到右)分别代表碳纳米管,石墨纤维,芳香尼龙纤维B和不锈钢。注意垂直轴是它们的强度。图中的每一增量是10的乘方。

  被国人在商业上大肆炒作的纳米技术在宇航科技中却是非常实际的东西。设想一下如果一个太空船自己有贮存能量的能力,不需要笨重的电池;或者它的表面不需要另加作用力就可以自动弯曲;或者电路可以直接接到航天飞机内部。当太空船使用的材料可以按照分子等级来设计时,就可能实现上述的整体结构。

  人的皮肤可以自行愈合,有些性能先进的材料也可以做到这一点。能自行愈合的材料由被称为“离聚物”的长链分子构成,当像子弹这样的物体靠近它时,它就会有反应。太空船可以采用这样的“皮肤”,因为太空中到处都是从彗星和小行星发出的快速移动的像小子弹一样的碎片。一旦这些鹅卵石大小沙砾中的一个击穿太空船的盔甲,太空船就会出现危险。如果太空船的盔甲上有一层能够自己愈合的材料,就可以保证船舱万无一失。

  人可以感受到他们身体任何部位的刺激,甚至最轻微的刺痛也可以引起人体的反应。这是一种令人惊奇的自我监控系统——可能是因为你的肌肤里有数百万用显微镜才能观察到的神经末梢,它们能将这些信号传递给大脑。

  同样的,制造太空船应急系统的材料里,也可以装入纳米大小的传感器,这些传感器持续不断地监视材料的状况。如果某个部件出现故障——也就是它感觉到不妙时,这些传感器就会在事故发生前通知中央电脑。

压电材料
压电材料
  左图是由美国宇航局兰利研究中心研制的压电材料,它可以“感觉”到材料的变形,例如,在它弯曲或承受表面压力时,它就有反应,产生一个微弱的电压,作为一个信号传给中央电脑。

  分子电线可以将所有这些内部传感器传出的信号发送到中央电脑,而不需要使用数百万条电线来传递信号。纳米管可以担当这个角色,纳米管可以很方便的处于主导地位或是半主导地位,这取决于它们的构成。科学家们已经研制出其他的可伸长的分子电线,它们中的一部分自然而然的组装成有用的结构

  在燃料方面,传统的化学火箭发动机一般使用二元燃料,其中以氢氧反应为多,也包括其他类型的反应,比如我国二级火箭芯级和助推器使用四氧化二氮和偏二甲肼做燃料,但总的来说液态的氢氧还综合性能最好的。还有许多其他类型的反应可以提供更大的能量输出,但却无法被传统的火箭发动机所利用,因为它们的产物是非气体的,而火箭发动机必须利用气体的喷射来提供推力,显然那些途径无法提供一个出路。

  研究者希望,能够保持目前的推力标准,同时大幅度提高比冲量。我们可能会想到利用三元燃料可能会提升能量输出效率,许多火箭专家们也是选择这个思路,但迄今为止的实验结果比较让人失望,虽然的确能提高,但提高量非常小,而且还要增加发动机的复杂性。

  大幅度提高传统火箭发动机效能的希望被寄托在高聚能物质(HEDM)上,这个概念还是比较新的概念,而且对于实际的潜力还知道得很少。途径是利用自由基(free radicals)或者亚稳定原子(metastable atoms),自由基是至少有一个未配对的电子的原子或原子团,这使它具有高度的反应性;由于电子能级的改变而处于亚稳态的原子同样具有高反应性。研究认为,最具有可能的是原子氢(atomic hydrogen,一种自由基)和亚稳定氦(metastable helium),预计其比冲量能分别达到2,100秒和3,150秒。而对比起来使用传统的燃料只能达到400秒,最多不超过500秒。

  在原子氢方面,问题在于如何大量生产,目前的技术水平还达不到大规模生产的能力。而且即使解决了这个问题,也需要对火箭燃料储存系统,做大的改动,增加强大的磁场和和低温系统,这无疑将增加大量的重量,抵消了高聚能物质节省重量增加推力的好处。

  亚稳定氦比自由基容易生产,使用激光或者粒子轰击都能把原子激发到亚稳定状态。但储存却非常困难,因为其寿命非常短暂。事实上,如果没有根本性突破,将完全无法用于发动机燃料。

  使用金属氢也是被讨论得很多的途径,这种压缩的氢可以释放出大量的能量,比冲量能达到1,700秒以上;比重1.15,燃料本身并不重。但生产同样是非常困难的,需要1.4兆巴(1兆巴等于1百万个大气压)的压力,而有科学家估计需要高达5.6兆巴,通过冲击加热到3,000K。储存遇到的问题和亚稳定氦一样,因为如果减少对金属氢的压力,就会变成亚稳定状态。

  这些高聚能物质遇到的共同问题是需要以低温固态方式储存,这既难以达到,更难以保持。而我们的火箭燃料箱还要加以改进,因为储存它们需要巨大的压力,燃料箱必须能够承受这种压力。如果我们无法找到承力强而重量轻的材料,恐怕就只有加固燃料箱一途,这意味着火箭的重量又要增加。

火箭
火箭。点击图片放大


  考虑到这些问题和其在比冲量上的改善程度,对传统化学火箭使用的燃料的改进恐怕不如前述的那些发动机推进方式更有前途。并且恐怕不适合长途的星际旅行,而只适合在近地空间完成任务。 end

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多