分享

Julian Schwinger:Source Theory and the UCLA Years—From Magnetic Charge to the Casimir Effect

 忧郁的诗 2011-05-19

Julian Schwinger:

Source Theory and the UCLA Years—

From Magnetic Charge to the Casimir Effect*

Kimball A. Milton

Imperial College and the University of Oklahoma

ABSTRACT: Julian Schwinger began the construction of Source Theory in

1966 in response to the then apparent failure of quantum field theory to describe

strong interactions, the physical remoteness of renormalization, and the utility of

effective actions in describing chiral dynamics. This development did not meet

with wide acceptance, and in part for this reason Julian left Harvard for UCLA

in 1971. This nonacceptance was quite understandable, given the revolution in

gauge theories that was then unfolding, a revolution, of course, for which he had

laid much of the groundwork. Acceptance of his ideas was further impeded by

his rejection of the quark model of hadrons and of QCD. I will argue, however,

that the source theory development was not really so abrupt a break with the

past as Julian may have implied, for the ideas and techniques in large measure

were present in his work at least as early as 1951. Those techniques and ideas

are still of fundamental importance to theoretical physics, so much so that the

designation “source theory” has become superfluous. Julian did a great deal of

innovative physics during the last 30 years of his life, and I will touch on some of

the major themes, including magnetic charge, chiral dynamics, radiation theory,

Thomas-Fermi models, theory of measurement, and the Casimir effect, as well as

various forays into phenomenology. The impact of much of this work is not yet

apparent.

* Invited Talk at Joint APS/AAPT Meeting, Washington, April 1995

1

significant

theoretical physicist since Dirac. It is with great sadness that I will attempt to

summarize the second half of his career, from 1966 until his death in 1994, a time during

which he published nearly 100 papers on a great range of topics. His passing was especially

difficult for me because at the time I, ignorant of his illness, was on my way to work

with him on sonoluminescence; instead, when I arrived at UCLA I spoke at the private

memorial his wife Clarice held at their home, and updated his complete publication list,

a task I had commenced seventeen years previously in connection with his 60th birthday

festivities.1

Birth of Source Theory

I begin the tale with “magnetic charge” because his last “operator” field theory papers

[129,130,133,134], published in 1966, and the first “new” papers after source theory was

established [147,150], published in 1968–69, were devoted to that subject. But probably

the appropriate starting point is, in fact, his Nobel lecture, delivered on December 11, 1965

[132]. He ends the lecture with a discussion of phenomenological relativistic quantum field

theory, and states that “One has still to appreciate the precise rules of phenomenological

relativistic field theory, . . . , given that the strong fundamental interactions have operated

to compose the various physical particles.” Is this not a prefigurement of his attempt to

create a source-theory revolution six months later?

It surely was the difficulty of incorporating strong interactions into field theory that led

to “Particles and Sources,” received by the Physical Review in July 1966 [135], a recording

of lectures Julian gave in Tokyo that summer. Particle phenomenology is primary, and I

personally note with relish that he cites my Oklahoma colleague George Kalbfleisch in the

second sentence of the introduction for the discovery of the _meson. This paper already

included particles of all spins through the use of multispinors. The following year there

1 M. Flato, C. Fronsdal, and K. A. Milton, Selected Papers (1937–1976) of Julian

Schwinger (Reidel, Dordrecht, 1979). The numbers in this article enclosed in square brackets

refer to the list of Julian’s papers I had compiled in that reference, and updated in

August of 1994. The updated list is attached.

2

was an explosion of partial (chiral) symmetry papers [137–41,143–45]. I believe that it was,

in fact, his attempt to put current algebra in effective Lagrangian language, together with

Weinberg, which was the immediate impetus to the source-theory development. These

papers were quite important at the time.

What is Source Theory?

Although Julian had invented the notion of a source at least as early as 1951, it

was only in 1966 that he realized that he could base the whole machinery of particle

physics on the abstraction of particle-creation and annihilation acts. One can define a

free action, say for a photon, in terms of propagation of virtual photons between photon

sources, conserved in order to remove the scalar degree of freedom. But a virtual photon

can in turn act as a pair of electron-positron sources, through a “primitive interaction”

between electrons and photons, essentially embodied in the conserved Dirac current. So

this multiparticle exchange gives rise to quantum corrections to the photon propagator,

to vacuum polarization, and so on. All this without any reference to renormalization or

“high-energy speculations.”

In its “purest” or at least original form, such source theory ideas were used to generate

perturbative amplitudes in “causal” form; that is, in which real particles were exchanged

between virtual sources separated in time. From this one could deduce immediately

(“space-time extrapolation”) the full amplitude in spectral form, that is, in what most

people would refer to as a “dispersion relation.” Such a direct generation of amplitudes

was extremely powerful, and often allowed a completely finite calculation to be carried out.

An impressive example is our calculation of the 4th-order Compton-scattering helicity amplitudes

directly in double-spectral form.2 Noncausal methods, more reminiscent of usual

Feynman diagram techniques, but significantly different in spirit, were also developed, and

there we showed the power of the technique by some very simple pen-and-ink calculations

of 6th-order processes contributing to the electron’s magnetic moment.3

So what is the legacy of the source-theory experience? I think it is more evolutionary

than revolutionary. New techniques were introduced by Julian, principally in the causal

2 K. A. Milton, L. L. DeRaad, Jr., and W.-y. Tsai, Phys. Rev. D 6, 1411 (1972)

3 K. A. Milton, L. L. DeRaad, Jr., and W.-y. Tsai, Phys. Rev. D 9, 1809, 1814 (1974)

3

formulation, that supplement those introduced in earlier decades, such as the proper-time

technique (which everyone uses nowadays), the quantum action principle (particularly

beloved by atomic physicists now), as so on, as detailed by Lowell Brown. One commonality

is the emphasis of the power of differential, rather than integral techniques (“It continues

to surprise me that so many people seem to accept this formal statement [the solution

of the quantum action principle as a path integral] as a satisfactory starting point of a

theory” [160]). Certainly in my own work that has been a continuing theme, even if the

word source theory now occurs but rarely. I interpret the decision of the PACS indexers to

remove the “source theory” category not as a sign that source theory has become irrelevant

or redundant (in the British sense); but rather that these useful techniques are part of the

common language and ammunition that theorists use to attack the most difficult problems

in physics.

Let us return to the history.

Source Theory at Harvard

In 1967 “Source and Electrodynamics” [142] was published, which put QED into the

new framework. The following year, Julian treated gravitons, and he gave his demonstration

that full general relativity is essentially a consequence of assuming that the mediator

of the gravitational force is a massless helicity-2 particle [146,162,163,177]. It was roughly

at this point that I entered the picture, when, as a second-year student, all fear and trembling,

I asked Julian if I could work for him. (But I was well prepared, bringing a good

knowledge of Green’s functions from the University of Washington.) I told him I was also

taking Sydney Coleman’s field theory lectures and Arthur Jaffe’s constructive field theory

course, but that was all right with Julian, in spite of his plea for the mind not “warped

. . . past the elastic limit.” (The quotation is from the preface of [153].) The first book

treatment of source theory, based on the Brandeis lectures, appeared in 1969 [149]; Julian

presented me with a copy for successfully passing my oral exam (which I recall as primarily

an argument between Julian and Paul Martin). I also recall the excitement of his

source theory treatment of magnetic charge [147], particularly his speculative dyon model

of matter which he published in Science in 1969 [150]. (His philosophy here was summed

4

 

up in his quotation from Faraday: “Nothing is too wonderful to be true, if it be consistent

with the laws of nature, and in such things as these, experiment is the best test of such

consistency,” which I would later find emblazoned on the walls of the old physics building

at UCLA, Kinsey Hall.)

Three other books came out in as many years: Discontinuity in Waveguides (1968)

[148], based on Dave Saxon’s notes recording a small portion of his wartime radar work;

Quantum Kinematics and Dynamics (1970) [152], an unfinished textbook on quantum

mechanics, and Particles, Sources, and Fields, Vol. 1 (1970) [153]. The latter was intended

to be a comprehensive treatment of source theory, based on the motto “if you can’t join

’em, beat ’em.” Harold, the “hypothetical alert reader of limitless dedication,” makes his

appearance, and unlike a real student, is allowed to interrupt, particularly when he has “an

historical gleam in his eye.” Julian started writing the second volume of this book during

a six-month sabbatical in Tokyo in 1970; on his return, he announced to his twelve or so

graduate students that he was leaving Harvard in February 1971 for UCLA. Although I

had only begun my fourth year at Harvard, I didn’t have long to worry, for half an hour

later he informed me, Lester DeRaad, Jr., and Wu-yang Tsai that he had arranged with

UCLA to bring us along as postdocs. Little did I guess that my affiliation with UCLA

would last a decade!

Source Theory at UCLA

Why did he leave Harvard in 1971? Certainly, he perceived a chilly reception for

source theory at Harvard, and thought (more or less erroneously) that UCLA would be

more hospitable. But, probably at least as important was the fact he had been at Harvard

for 25 years, and felt the need of a change. The sunny climes of Southern California, where

he could and did swim and play tennis every day were an enormous attraction. Although

it was billed as a temporary move, it was always clear to me that it was to be a permanent

change. Appropriately, LA greeted his arrival with a major earthquake. He soon bought

a beautiful home in Bel Air, with magnificent views of the city and the ocean.4 One thing

4 He also took the opportunity to correct the error in his license plates discussed by

Lowell Brown. Since California required at least one letter in vanity plates (unfortunately

5

Julian did not anticipate: the caliber of graduate students at UCLA was far inferior to

what he was used to at Harvard. Consequently, after more than 70 Ph.D.’s at Harvard,

I believe only three ever finished at UCLA (only a few more started). (I can only recall

Luis Urrutia, Walter Wilcox, and Greg Wilensky.)

Of course, also in 1971 gauge theories took off again, which doomed general reception

to source theory. Julian was very much aware of what was going on, and proposed his

own U(2) version of the “standard model” in 1972 [155], phenomenologically acceptable in

those days. (Shelly Glashow has already reminded us of his fundamental work in making

the electroweak synthesis possible.) [We self-styled “sourcerer’s apprentices” contributed

several papers to the development of the electroweak theory.] For the next two years

he worked very hard on the second volume of Particles, Sources, and Fields (proofed

scrupulously by us three), devoted to electrodynamics, which came out in 1973 [158]. Also

in 1973 was the rebirth of strong-field electrodynamics, with the publication of “Classical

Radiation of Accelerated Electrons. II. A Quantum Viewpoint” [156], the first paper in

which series having been published in 1949 [56]. (This illustrates the continuity of Julian’s

work, a subject to which I will return.) This led to a series of papers with Tsai [159,176,186],

the last of which harkens back to a 1954 paper on the quantum corrections to synchrotron

radiation [78]. What Julian viewed as a prediction of J/ , in the form of a proposal of

an alternative mechanism for avoiding strangeness-changing neutral currents, appeared in

the same year [157], which, after the November revolution, was followed a series of related

phenomenological forays on the   particles [166,169–71,173]. In 1974 he wrote two papers

on “renormalization group without renormalization group” [164–65].5

With some very impressive work on electrodynamics (including methods harking back

to his 1951 “Gauge Invariance and Vacuum Polarization” paper [64] and other classic

papers, an independent calculation of the 4th-order contribution to the electron’s magnetic

moment, and a revisiting of the axial-vector anomaly which he had discovered in [64])

not Greek), he chose brevity and universality: A137Z.

5 Sometime around this point Clarice introduced me to the lovely and talented Margarita

Ba˜nos, daughter of fellow physicist and Radiation Lab colleague Alfredo Ba˜nos. We

were married three years later.

6

constituting the first half of the third volume of PSF, he abandoned work on the book

at the point where he had to face up to strong interactions. (The uncompleted third

volume eventually came out in 1989 when Addison-Wesley repackaged the whole set [211].)

However, he was not about to abandon high-energy physics, for in 1974 Julian continued

his iconoclastic interpretation of phenomenology with an alternative viewpoint of deepinelastic

scattering based on double spectral forms (the precursor was the Deser-Gilbert-

Sudarshan representation6), work which continued until 1977 [167,178,179,179a,181–83],

starting from the valid premise that scaling does not necessitate point-like constituents.

Julian revisited magnetic charge in 1975 [172], just in time to hope that “the Price

might be right” (paraphrased from Selected Papers).7 A joint analysis of “dyon-dyon

scattering” followed in 1976 [180]. He also became interested in the Casimir effect in 1975

[174], I think through conversations with Seth Putterman. We wrote some joint papers on

the Casimir effect in 1978, among other things reconfirming Tim Boyer’s surprising result

on the sign of the spherical effect [187–88]. In 1977 or ’78 Julian invited Stan Deser to

UCLA to give us some private lessons on supersymmetry; although he submitted a paper

on the multispinor basis of supersymmetry in 1978 [190], he kicked himself for not thinking

of the idea first: In his words, “All right, wise guy! Then why didn’t you do it first?”

During all these years he taught brilliant graduate and undergraduate courses in field

theory (source theory) and quantum mechanics, lecturing for two hours a day, twice a

week, followed by lunch with Bob Finkelstein and us. At first we ate at various Chinese

restaurants, but then, as he became more diet conscious, at the Chatam in Westwood,

where he always ordered rare roast beef. Tennis with Lester DeRaad was a regular part of

his weekly regime.

I think it was in 1977 that Julian taught graduate electrodynamics, in a typically

novel and very insightful way (including variational principles, of course, but especially

noteworthy for the pre¨eminence of physics over mathematics), and I suggested we turn

the notes into a textbook. We completed a first draft (more properly, version 1.5) of

a manuscript, all neatly typed by Gilda Reyes of UCLA, and signed a contract with

6 S. Deser, W. Gilbert, and E. C. G. Sudarshan, Phys. Rev. 115, 731 (1959)

7 Julian often had the television on while doing physics.

7

W. H. Freeman. Unfortunately, about the time I left UCLA in 1979 Julian decided the

manuscript did not sound enough like himself, and started rewriting, resulting in turgidity.

The project was abandoned in 1981. However, I taught electrodynamics last fall (scheduled

before Julian’s death), and will do so again next year, so I have hope of reviving the book.

The Last 15 Years

In 1980, after teaching a quantum mechanics course (a not-unusual sequence of events),

Julian began a series of papers on the Thomas-Fermi model of atoms [192–96,201–6]. He

soon hired Berthold-Georg Englert replacing me as a postdoc to help with the elaborate

calculations. This endeavor lasted until 1985.8 In 1985 his popular book on relativity,

Einstein’s Legacy, appeared, based on a series of television programmes he presented for

the Open University in the UK some years earlier. (Another legacy of those programmes

was the robot who graced his living room thereafter.) He wrote three “Humpty Dumpty”

measurement theory papers (dealing with spin coherence in a Stern-Gerlach interferometer)

in 1988 [208–10], in collaboration with Marlan Scully and Englert. Those who have

taken his quantum mechanics courses know how central the Stern-Gerlach experiment was

to his formulation of quantum mechanics. He seemed to be spending a great deal of time

on several book projects, but to my knowledge, nothing was completed. He also wrote

three very interesting homages in the ’80’s: “Two Shakers of Physics” [200], the pun in

the title referring to himself and Tomonaga, “Hermann Weyl and Quantum Kinematics”

[208a] in which he acknowledges his debt to one of his “gods,” whose ways “are mysterious,

inscrutable, and beyond the comprehension of ordinary mortals,” and “A Path to Electrodynamics”

[212], dedicated to Richard Feynman. In 1989 began a series of papers on cold

fusion [213–4,216–20], about which the less said, the better. His last physics endeavor, as I

8 I understand from conversations after my talk inWashington that this work not only is

regarded as important in its own right by atomic physicists, but has led to some significant

results in mathematics. A long series of substantial papers by C. Fefferman and L. Seco has

been devoted to proving his conjecture about the Z dependence of the ground state energy

of large atoms [193], starting with Bull. Am. Math. Soc. 23, 525 (1990) and continuing

through Adv. Math. 111, 88 (1995).

8

implied above, was the suggestion that the puzzling phenomenon of sonoluminescence may

be due to the “dynamic Casimir effect” [221–8]. (The last paper was submitted on April

30, 1993.) Typically, he was unaware of some of my own papers relevant to the subject,

but, atypically, he was very explicitly seeking my collaboration in the last year of his life

(I talked to him at some length in December 1993, at the annual Christmas party given

by the Ba˜nos’, which he and Clarice always attended, and at a subsequent lunch). He felt

that “carrying out that program is—as one television advertiser puts it—job one” [229].

Jack Ng and I are indeed in the process of doing just that.

Conclusions

How do we place this portion of Julian’s career in context? It seems to me that a

number of general conclusions may be drawn.

1. I would argue that source theory was not so abrupt a break with the past as Julian

presented it. It becomes increasingly clear as one reads PSF, or his general oeuvre, that

he returns to techniques he invented in the ’40’s and ’50’s. Examples are “non-causal

methods” which can be found in his famous 1951 “Gauge Invariance and Vacuum

Polarization” paper [64], strong field methods, which go back to his early work on

synchrotron radiation [56,78] (and also GIVP), and even the theory of sources, which

he introduced also in 1951 [66]. He, of course, was aware of this continuity; but he

felt the need to emphasize a rather complete break. He saw a great improvement in

conceptual clarity, for when he did operator field theory he carried around a great deal

of baggage (which really is essential) which most people had dispensed with or ignored.

Source theory enabled Julian to dispense with the “physical remoteness” [153] of

renormalization and confront the physics directly. Undoubtedly, with hindsight, we

can say that his later work would have had much greater impact if he had not drawn

such an exclusive distinction.

2. Of course, probably a bigger impediment to the reception of his ideas was a change

in the times. Dispersion relations had died before he mounted his attack, and field

theory was reborn with the discovery by ’t Hooft that gauge theories of weak and

strong interactions made sense. He could accept the electroweak synthesis (to which

9

he had contributed so much), but not quarks and QCD. The notion of “particles”

which were not asymptotic states was too distasteful. (Yet his idea of dyons was not

so different—maybe it was just the “unmellisonant” name [150].)

3. In many of his later projects, the first paper in the series was far and away the

strongest. He had a very useful idea in the first deep inelastic scattering paper [167],

but thereafter the work largely reduced to fitting data with many parameters. Although

I am less familiar with that work, a similar characteristic is true of the Thomas-

Fermi papers (although here it is the first two papers that stand out). And in the

“dynamic Casimir effect” work there is enough in these many short papers for about

one substantial article; the essential calculations have yet to be carried out (some of

Julian’s approximations are, I believe, erroneous); and the relevance to sonoluminescence

remains to be established.

4. The last 30 years of his life were not Julian’s strongest scientifically. Certainly not

for lack of ability: He remained an awesome calculator and a brilliant expositor of

unconventional and clever ideas. But the times had changed, and Julian was no

longer the molder of ideas for theoretical physics. He is sometimes criticized for

venturing into phenomenology—but in fact his first, and quite substantial, papers were

phenomenological. [The unfortunate distinction between theory and phenomenology

(not one that Julian ever made) is a product of the last decade or so.] Much of his

criticism of QCD is quite valid—the theory remains on very tenuous ground, and is

more of a parametrization than the first-principles theory it pretends to be. GUTs

and strings he found outrageous not because of their theoretical failings but because

he, quite rightly, found the notion of a desert between 1 TeV and the Planck scale

completely unbelievable—this was, after all, his reason for inventing source theory, to

separate high-energy speculations from models of low-energy phenomena.

5. As footnote 8 illustrates, we should not underestimate the power of his work to have

a continuing impact. We can confidently expect future surprises. This may be true

as well of the many papers in the attached list to which I have not referred, because

they do not fit into a well-defined pigeonhole. I can only urge the reader to read his

papers, for riches are contained therein.

10

Eight months before his death, Julian made his first appearance on the internet (and

his final publication in any form) with his July 1993 Nottingham lecture, “The Greening

of Quantum Field Theory: George and I” (hep-ph/9310283) [229]. This lecture provides a

remarkable overview of Julian’s work from his own perspective. I commend his final words

to you: Like George Green, “he is, in a manner of speaking, alive, well, and living among

us.”

Acknowledgements

I am grateful to the UK PPARC for a Senior Visiting Fellowship and Imperial College

for its hospitality. I thank UCLA for its hospitality during the period when I updated

Julian’s publication list, and the US Department of Energy for partial financial support.

I dedicate this article to Julian Schwinger, the most brilliant physicist I have known, and

one of my very dearest friends, to whom I owe so much.

11

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多