1.1 U-Boot工作过程 U-Boot启动内核的过程可以分为两个阶段,两个阶段的功能如下: (1)第一阶段的功能
硬件设备初始化
加载U-Boot第二阶段代码到RAM空间
设置好栈
跳转到第二阶段代码入口 (2)第二阶段的功能
初始化本阶段使用的硬件设备
检测系统内存映射
将内核从Flash读取到RAM中
为内核设置启动参数
调用内核 1.1.1 U-Boot启动第一阶段代码分析
第一阶段对应的文件是cpu/arm920t/start.S和board/samsung/mini2440/lowlevel_init.S。 U-Boot启动第一阶段流程如下: 图 2.1 U-Boot启动第一阶段流程 根据cpu/arm920t/u-boot.lds中指定的连接方式: ENTRY(_start) SECTIONS { . =
0x00000000; . =
ALIGN(4); .text
: {
cpu/arm920t/start.o
(.text)
board/samsung/mini2440/lowlevel_init.o (.text) board/samsung/mini2440/nand_read.o
(.text)
*(.text) } …
… } 第一个链接的是cpu/arm920t/start.o,因此u-boot.bin的入口代码在cpu/arm920t/start.o中,其源代码在cpu/arm920t/start.S中。下面我们来分析cpu/arm920t/start.S的执行。 1.
硬件设备初始化 (1)设置异常向量 cpu/arm920t/start.S开头有如下的代码: .globl _start _start: b start_code /* 复位 */ ldr pc, _undefined_instruction /* 未定义指令向量 */ ldr pc, _software_interrupt /* 软件中断向量 */ ldr pc, _prefetch_abort /* 预取指令异常向量 */ ldr pc, _data_abort /* 数据操作异常向量 */ ldr pc, _not_used /* 未使用 */ ldr pc, _irq /* irq中断向量 */ ldr pc, _fiq /* fiq中断向量 */ /* 中断向量表入口地址 */ _undefined_instruction:
.word undefined_instruction _software_interrupt: .word
software_interrupt _prefetch_abort: .word
prefetch_abort _data_abort: .word
data_abort _not_used: .word
not_used _irq: .word
irq _fiq: .word
fiq .balignl
16,0xdeadbeef 以上代码设置了ARM异常向量表,各个异常向量介绍如下: 表 2.1 ARM异常向量表
在cpu/arm920t/start.S中还有这些异常对应的异常处理程序。当一个异常产生时,CPU根据异常号在异常向量表中找到对应的异常向量,然后执行异常向量处的跳转指令,CPU就跳转到对应的异常处理程序执行。 其中复位异常向量的指令“b start_code”决定了U-Boot启动后将自动跳转到标号“start_code”处执行。 (2)CPU进入SVC模式 start_code: /* * set the cpu to SVC32
mode */ mrs r0, cpsr bic r0, r0, #0x1f /*工作模式位清零 */ orr r0, r0, #0xd3 /*工作模式位设置为“10011”(管理模式),并将中断禁止位和快中断禁止位置1 */ msr cpsr, r0 以上代码将CPU的工作模式位设置为管理模式,并将中断禁止位和快中断禁止位置一,从而屏蔽了IRQ和FIQ中断。 (3)设置控制寄存器地址 # if defined(CONFIG_S3C2400) # define pWTCON 0x15300000
# define INTMSK 0x14400008
# define CLKDIVN 0x14800014
#else /*
s3c2410与s3c2440下面4个寄存器地址相同 */ # define pWTCON 0x53000000 /* WATCHDOG控制寄存器地址 */ # define INTMSK 0x4A000008 /* INTMSK寄存器地址 */ # define INTSUBMSK 0x4A00001C
/* INTSUBMSK寄存器地址 */ # define CLKDIVN 0x4C000014
/* CLKDIVN寄存器地址 */ # endif 对与s3c2440开发板,以上代码完成了WATCHDOG,INTMSK,INTSUBMSK,CLKDIVN四个寄存器的地址的设置。各个寄存器地址参见参考文献[4] 。 (4)关闭看门狗 ldr r0, =pWTCON mov r1, #0x0 str r1, [r0]
/* 看门狗控制器的最低位为0时,看门狗不输出复位信号 */ 以上代码向看门狗控制寄存器写入0,关闭看门狗。否则在U-Boot启动过程中,CPU将不断重启。 (5)屏蔽中断 /* * mask all IRQs by setting all bits in the
INTMR - default */ mov r1, #0xffffffff /* 某位被置1则对应的中断被屏蔽 */ ldr r0, =INTMSK str r1, [r0] INTMSK是主中断屏蔽寄存器,每一位对应SRCPND(中断源引脚寄存器)中的一位,表明SRCPND相应位代表的中断请求是否被CPU所处理。
根据参考文献4,INTMSK寄存器是一个32位的寄存器,每位对应一个中断,向其中写入0xffffffff就将INTMSK寄存器全部位置一,从而屏蔽对应的中断。 # if defined(CONFIG_S3C2440) ldr
r1, =0x7fff
ldr
r0, =INTSUBMSK str
r1, [r0] # endif INTSUBMSK每一位对应SUBSRCPND中的一位,表明SUBSRCPND相应位代表的中断请求是否被CPU所处理。 根据参考文献4,INTSUBMSK寄存器是一个32位的寄存器,但是只使用了低15位。向其中写入0x7fff就是将INTSUBMSK寄存器全部有效位(低15位)置一,从而屏蔽对应的中断。 (6)设置MPLLCON,UPLLCON, CLKDIVN # if defined(CONFIG_S3C2440)
#define MPLLCON 0x4C000004
#define UPLLCON
0x4C000008
ldr
r0, =CLKDIVN
mov
r1, #5 str
r1, [r0] ldr
r0, =MPLLCON ldr
r1, =0x7F021
str
r1, [r0] ldr r0, =UPLLCON
ldr
r1, =0x38022 str
r1, [r0] # else /* FCLK:HCLK:PCLK =
1:2:4 */ /* default FCLK is 120
MHz ! */ ldr r0, =CLKDIVN mov r1, #3 str r1, [r0] #endif
CPU上电几毫秒后,晶振输出稳定,FCLK=Fin(晶振频率),CPU开始执行指令。但实际上,FCLK可以高于Fin,为了提高系统时钟,需要用软件来启用PLL。这就需要设置CLKDIVN,MPLLCON,UPLLCON这3个寄存器。 CLKDIVN寄存器用于设置FCLK,HCLK,PCLK三者间的比例,可以根据表2.2来设置。 表 2.2 S3C2440 的CLKDIVN寄存器格式
设置CLKDIVN为5,就将HDIVN设置为二进制的10,由于CAMDIVN[9]没有被改变过,取默认值0,因此HCLK = FCLK/4。PDIVN被设置为1,因此PCLK= HCLK/2。因此分频比FCLK:HCLK:PCLK = 1:4:8 。 MPLLCON寄存器用于设置FCLK与Fin的倍数。MPLLCON的位[19:12]称为MDIV,位[9:4]称为PDIV,位[1:0]称为SDIV。 对于S3C2440,FCLK与Fin的关系如下面公式: MPLL(FCLK) =
(2×m×Fin)/(p× 其中: m=MDIC+8,p=PDIV+2,s=SDIV MPLLCON与UPLLCON的值可以根据参考文献4中“PLL VALUE SELECTION TABLE”设置。该表部分摘录如下: 表 2.3 推荐PLL值
当mini2440系统主频设置为405MHZ,USB时钟频率设置为48MHZ时,系统可以稳定运行,因此设置MPLLCON与UPLLCON为: MPLLCON=(0x7f<<12)
| (0x02<<4) | (0x01) = 0x7f021 UPLLCON=(0x38<<12)
| (0x02<<4) | (0x02) = 0x38022 (7)关闭MMU,cache 接着往下看: #ifndef CONFIG_SKIP_LOWLEVEL_INIT bl cpu_init_crit #endif cpu_init_crit这段代码在U-Boot正常启动时才需要执行,若将U-Boot从RAM中启动则应该注释掉这段代码。 下面分析一下cpu_init_crit到底做了什么: 320 #ifndef
CONFIG_SKIP_LOWLEVEL_INIT 321
cpu_init_crit: 322 /* 323 *
使数据cache与指令cache无效 */ 324 */
325 mov
r0, #0 326 mcr
p15, 0, r0, c7, c7, 0 /*
向c7写入0将使ICache与DCache无效*/ 327 mcr
p15, 0, r0, c8, c7, 0 /*
向c8写入0将使TLB失效 */ 328 329 /* 330 *
disable MMU stuff and caches 331 */ 332 mrc
p15, 0, r0, c1, c0, 0 /* 读出控制寄存器到r0中 */ 333 bic
r0, r0, #0x00002300 @ clear bits
13, 9:8 (--V- --RS) 334 bic
r0, r0, #0x00000087 @ clear bits
7, 2:0 (B--- -CAM) 335 orr
r0, r0, #0x00000002 @ set bit 2
(A) Align 336 orr
r0, r0, #0x00001000 @ set bit 12
(I) I-Cache 337 mcr
p15, 0, r0, c1, c0, 0 /* 保存r0到控制寄存器 */ 338 339 /* 340 *
before relocating, we have to setup RAM timing 341 *
because memory timing is board-dependend, you will 342 *
find a lowlevel_init.S in your board directory. 343 */ 344 mov
ip, lr 345 346 bl
lowlevel_init 347 348 mov
lr, ip 349 mov
pc, lr 350 #endif /*
CONFIG_SKIP_LOWLEVEL_INIT */ 代码中的c0,c1,c7,c8都是ARM920T的协处理器CP15的寄存器。其中c7是cache控制寄存器,c8是TLB控制寄存器。325~327行代码将0写入c7、c8,使Cache,TLB内容无效。 第332~337行代码关闭了MMU。这是通过修改CP15的c1寄存器来实现的,先看CP15的c1寄存器的格式(仅列出代码中用到的位): 表 2.3 CP15的c1寄存器格式(部分)
各个位的意义如下: V : 表示异常向量表所在的位置,0:异常向量在0x00000000;1:异常向量在 0xFFFF0000 332~337行代码将c1的 M位置零,关闭了MMU。 (8)初始化RAM控制寄存器 其中的lowlevel_init就完成了内存初始化的工作,由于内存初始化是依赖于开发板的,因此lowlevel_init的代码一般放在board下面相应的目录中。对于mini2440,lowlevel_init在board/samsung/mini2440/lowlevel_init.S中定义如下: 45 #define BWSCON 0x48000000 /* 13个存储控制器的开始地址 */ … … 129
_TEXT_BASE: 130 .word
TEXT_BASE 131 132 .globl
lowlevel_init 133
lowlevel_init: 134 /* memory control configuration
*/ 135 /* make r0 relative the current location so
that it */ 136 /* reads SMRDATA out of FLASH rather than
memory ! */ 137 ldr
r0, =SMRDATA 138 ldr
r1, _TEXT_BASE 139 sub
r0, r0, r1 /*
SMRDATA减 _TEXT_BASE就是13个寄存器的偏移地址 */ 140 ldr
r1, =BWSCON /* Bus Width Status
Controller */ 141 add
r2, r0, #13*4 142 0: 143 ldr
r3, [r0], #4 /*将13个寄存器的值逐一赋值给对应的寄存器*/ 144 str
r3, [r1], #4 145 cmp
r2, r0 146 bne
0b 147 148 /* everything is fine now
*/ 149 mov
pc, lr 150 151 .ltorg 152 /* the literal pools
origin */ 153 154 SMRDATA: /*
下面是13个寄存器的值 */ 155 .word … … 156 .word
… … … … lowlevel_init初始化了13个寄存器来实现RAM时钟的初始化。lowlevel_init函数对于U-Boot从NAND Flash或NOR Flash启动的情况都是有效的。 U-Boot.lds链接脚本有如下代码: .text
: {
cpu/arm920t/start.o
(.text)
board/samsung/mini2440/lowlevel_init.o (.text) board/samsung/mini2440/nand_read.o
(.text) … …
}
board/samsung/mini2440/lowlevel_init.o将被链接到cpu/arm920t/start.o后面,因此board/samsung/mini2440/lowlevel_init.o也在U-Boot的前4KB的代码中。 U-Boot在NAND Flash启动时,lowlevel_init.o将自动被读取到CPU内部4KB的内部RAM中。因此第137~146行的代码将从CPU内部RAM中复制寄存器的值到相应的寄存器中。 对于U-Boot在NOR Flash启动的情况,由于U-Boot连接时确定的地址是U-Boot在内存中的地址,而此时U-Boot还在NOR Flash中,因此还需要在NOR Flash中读取数据到RAM中。 由于NOR Flash的开始地址是0,而U-Boot的加载到内存的起始地址是TEXT_BASE,SMRDATA标号在Flash的地址就是SMRDATA-TEXT_BASE。 综上所述,lowlevel_init的作用就是将SMRDATA开始的13个值复制给开始地址[BWSCON]的13个寄存器,从而完成了存储控制器的设置。 (9)复制U-Boot第二阶段代码到RAM cpu/arm920t/start.S原来的代码是只支持从NOR Flash启动的,经过修改现在U-Boot在NOR Flash和NAND Flash上都能启动了,实现的思路是这样的: bl bBootFrmNORFlash /*
判断U-Boot是在NAND Flash还是NOR Flash启动 */ cmp r0, #0 /*
r0存放bBootFrmNORFlash函数返回值,若返回0表示NAND Flash启动,否则表示在NOR Flash启动 */ beq nand_boot /*
跳转到NAND Flash启动代码 */ /* NOR Flash启动的代码 */ b stack_setup /* 跳过NAND Flash启动的代码 */ nand_boot: /* NAND Flash启动的代码 */ stack_setup:
/* 其他代码 */ 其中bBootFrmNORFlash函数作用是判断U-Boot是在NAND Flash启动还是NOR Flash启动,若在NOR Flash启动则返回1,否则返回0。根据ATPCS规则,函数返回值会被存放在r0寄存器中,因此调用bBootFrmNORFlash函数后根据r0的值就可以判断U-Boot在NAND
Flash启动还是NOR
Flash启动。bBootFrmNORFlash函数在board/samsung/mini2440/nand_read.c中定义如下: int
bBootFrmNORFlash(void) { volatile unsigned int *pdw = (volatile
unsigned int *)0; unsigned int dwVal; dwVal = *pdw; /* 先记录下原来的数据
*/ *pdw = 0x12345678; if (*pdw != 0x12345678) /* 写入失败,说明是在NOR
Flash启动 */ { return 1; } else
/*
写入成功,说明是在NAND
Flash启动
*/ { *pdw = dwVal; /* 恢复原来的数据 */ return 0; } } 无论是从NOR Flash还是从NAND Flash启动,地址0处为U-Boot的第一条指令“ b start_code”。 对于从NAND Flash启动的情况,其开始4KB的代码会被自动复制到CPU内部4K内存中,因此可以通过直接赋值的方法来修改。 对于从NOR Flash启动的情况,NOR Flash的开始地址即为0,必须通过一定的命令序列才能向NOR Flash中写数据,所以可以根据这点差别来分辨是从NAND Flash还是NOR Flash启动:向地址0写入一个数据,然后读出来,如果发现写入失败的就是NOR Flash,否则就是NAND Flash。 下面来分析NOR Flash启动部分代码: 208 adr
r0, _start /* r0 <-
current position of code
*/ 209 ldr
r1, _TEXT_BASE /* test
if we run from flash or RAM */ /* 判断U-Boot是否是下载到RAM中运行,若是,则不用 再复制到RAM中了,这种情况通常在调试U-Boot时才发生 */ 210 cmp
r0, r1 /*_start等于_TEXT_BASE说明是下载到RAM中运行 */ 211 beq
stack_setup 212 /* 以下直到nand_boot标号前都是NOR Flash启动的代码 */ 213 ldr
r2, _armboot_start 214 ldr
r3, _bss_start 215 sub
r2, r3, r2 /* r2 <-
size of armboot
*/ 216 add
r2, r0, r2 /* r2 <-
source end address
*/ 217 /* 搬运U-Boot自身到RAM中*/ 218
copy_loop: 219 ldmia
r0!, {r3-r10} /* 从地址为[r0]的NOR Flash中读入8个字的数据 */ 220 stmia
r1!, {r3-r10} /* 将r3至r10寄存器的数据复制给地址为[r1]的内存
*/ 221 cmp
r0, r2 /* until
source end addreee [r2]
*/ 222 ble
copy_loop 223 b
stack_setup /* 跳过NAND Flash启动的代码 */ 下面再来分析NAND Flash启动部分代码: nand_boot: mov r1,
#NAND_CTL_BASE ldr r2, =(
(7<<12)|(7<<8)|(7<<4)|(0<<0) ) str r2, [r1,
#oNFCONF] /* 设置NFCONF寄存器 */ /* 设置NFCONT,初始化ECC编/解码器,禁止NAND Flash片选 */ ldr r2, =(
(1<<4)|(0<<1)|(1<<0) ) str r2, [r1,
#oNFCONT] ldr r2, =(0x6) /* 设置NFSTAT */ str r2, [r1, #oNFSTAT] /* 复位命令,第一次使用NAND Flash前复位 */ mov r2, #0xff strb r2, [r1,
#oNFCMD] mov r3, #0 /* 为调用C函数nand_read_ll准备堆栈 */ ldr sp,
DW_STACK_START mov fp, #0 /* 下面先设置r0至r2,然后调用nand_read_ll函数将U-Boot读入RAM */ ldr r0, =TEXT_BASE /* 目的地址:U-Boot在RAM的开始地址 */ mov r1, #0x0
/* 源地址:U-Boot在NAND Flash中的开始地址 */ mov r2, #0x30000
/* 复制的大小,必须比u-boot.bin文件大,并且必须是NAND Flash块大小的整数倍,这里设置为0x30000(192KB) */ bl nand_read_ll
/* 跳转到nand_read_ll函数,开始复制U-Boot到RAM */ tst r0, #0x0 /* 检查返回值是否正确 */ beq stack_setup bad_nand_read: loop2: b loop2 //infinite
loop .align 2 DW_STACK_START: .word STACK_BASE+STACK_SIZE-4 其中NAND_CTL_BASE,oNFCONF等在include/configs/mini2440.h中定义如下: #define NAND_CTL_BASE
0x4E000000 // NAND
Flash控制寄存器基址 #define STACK_BASE
0x33F00000 //base address of
stack #define STACK_SIZE
0x8000 //size of
stack #define oNFCONF 0x00 /* NFCONF相对于NAND_CTL_BASE偏移地址 */ #define oNFCONT 0x04 /* NFCONT相对于NAND_CTL_BASE偏移地址*/ #define oNFADDR 0x0c /* NFADDR相对于NAND_CTL_BASE偏移地址*/ #define oNFDATA 0x10 /* NFDATA相对于NAND_CTL_BASE偏移地址*/ #define oNFCMD 0x08 /* NFCMD相对于NAND_CTL_BASE偏移地址*/ #define oNFSTAT 0x20 /* NFSTAT相对于NAND_CTL_BASE偏移地址*/ #define oNFECC 0x2c /* NFECC相对于NAND_CTL_BASE偏移地址*/ NAND Flash各个控制寄存器的设置在S3C2440的数据手册有详细说明,这里就不介绍了。 代码中nand_read_ll函数的作用是在NAND Flash中搬运U-Boot到RAM,该函数在board/samsung/mini2440/nand_read.c中定义。 NAND Flash根据page大小可分为2种: 512B/page和2048B/page的。这两种NAND Flash的读操作是不同的。因此就需要U-Boot识别到NAND Flash的类型,然后采用相应的读操作,也就是说nand_read_ll函数要能自动适应两种NAND Flash。 参考S3C2440的数据手册可以知道:根据NFCONF寄存器的Bit3(AdvFlash (Read only))和Bit2 (PageSize (Read only))可以判断NAND Flash的类型。Bit2、Bit3与NAND Flash的block类型的关系如下表所示: 表 2.4 NFCONF的Bit3、Bit2与NAND Flash的关系
由于的NAND Flash只有512B/page和2048 B/page这两种,因此根据NFCONF寄存器的Bit3即可区分这两种NAND Flash了。 完整代码见board/samsung/mini2440/nand_read.c中的nand_read_ll函数,这里给出伪代码: int nand_read_ll(unsigned char *buf, unsigned long start_addr, int
size) { //根据NFCONF寄存器的Bit3来区分2种NAND Flash if( NFCONF & 0x8
)
/* Bit是1,表示是2KB/page的NAND Flash */ {
//////////////////////////////////// 读取2K block 的NAND Flash
//////////////////////////////////// } else /* Bit是0,表示是512B/page的NAND Flash */ {
///////////////////////////////////// 读取512B block 的NAND Flash
///////////////////////////////////// } return
0; } (10)设置堆栈 /* 设置堆栈
*/ stack_setup: ldr r0, _TEXT_BASE /* upper 128 KiB: relocated
uboot */ sub r0, r0, #CONFIG_SYS_MALLOC_LEN /* malloc area */ sub r0, r0, #CONFIG_SYS_GBL_DATA_SIZE /* 跳过全局数据区
*/ #ifdef CONFIG_USE_IRQ sub r0, r0,
#(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ) #endif sub sp, r0, #12 /* leave 3 words for abort-stack */ 只要将sp指针指向一段没有被使用的内存就完成栈的设置了。根据上面的代码可以知道U-Boot内存使用情况了,如下图所示: 图2.2 U-Boot内存使用情况 (11)清除BSS段 clear_bss: ldr r0, _bss_start /* BSS段开始地址,在u-boot.lds中指定*/ ldr r1, _bss_end /* BSS段结束地址,在u-boot.lds中指定*/ mov r2, #0x00000000 clbss_l:str r2, [r0] /* 将bss段清零*/ add r0, r0, #4 cmp r0, r1 ble clbss_l 初始值为0,无初始值的全局变量,静态变量将自动被放在BSS段。应该将这些变量的初始值赋为0,否则这些变量的初始值将是一个随机的值,若有些程序直接使用这些没有初始化的变量将引起未知的后果。 (12)跳转到第二阶段代码入口 ldr pc, _start_armboot _start_armboot: .word start_armboot 跳转到第二阶段代码入口start_armboot处。 1.1.2 U-Boot启动第二阶段代码分析
start_armboot函数在lib_arm/board.c中定义,是U-Boot第二阶段代码的入口。U-Boot启动第二阶段流程如下: 图 2.3 U-Boot第二阶段执行流程 在分析start_armboot函数前先来看看一些重要的数据结构: (1)gd_t结构体 U-Boot使用了一个结构体gd_t来存储全局数据区的数据,这个结构体在include/asm-arm/global_data.h中定义如下: typedef struct global_data { bd_t *bd; unsigned long flags; unsigned long baudrate; unsigned long have_console; /* serial_init() was called
*/ unsigned long env_addr; /* Address
of Environment struct */ unsigned long env_valid; /* Checksum of Environment valid?
*/ unsigned long fb_base;
/* base address of frame buffer */ void **jt; /* jump table
*/ } gd_t; U-Boot使用了一个存储在寄存器中的指针gd来记录全局数据区的地址: #define DECLARE_GLOBAL_DATA_PTR
register volatile gd_t *gd asm ("r8")
DECLARE_GLOBAL_DATA_PTR定义一个gd_t全局数据结构的指针,这个指针存放在指定的寄存器r8中。这个声明也避免编译器把r8分配给其它的变量。任何想要访问全局数据区的代码,只要代码开头加入“DECLARE_GLOBAL_DATA_PTR”一行代码,然后就可以使用gd指针来访问全局数据区了。 根据U-Boot内存使用图中可以计算gd的值: gd = TEXT_BASE -CONFIG_SYS_MALLOC_LEN
- sizeof(gd_t) (2)bd_t结构体 bd_t在include/asm-arm.u/u-boot.h中定义如下: typedef struct
bd_info { int bi_baudrate;
/* 串口通讯波特率 */ unsigned long bi_ip_addr;
/* IP 地址*/ struct environment_s
*bi_env; /*
环境变量开始地址 */ ulong
bi_arch_number; /* 开发板的机器码 */ ulong
bi_boot_params; /* 内核参数的开始地址 */ struct /*
RAM配置信息 */ { ulong
start; ulong
size; }bi_dram[CONFIG_NR_DRAM_BANKS]; }
bd_t; U-Boot启动内核时要给内核传递参数,这时就要使用gd_t,bd_t结构体中的信息来设置标记列表。 (3)init_sequence数组 U-Boot使用一个数组init_sequence来存储对于大多数开发板都要执行的初始化函数的函数指针。init_sequence数组中有较多的编译选项,去掉编译选项后init_sequence数组如下所示: typedef int
(init_fnc_t) (void); init_fnc_t
*init_sequence[] = { board_init,
/*开发板相关的配置--board/samsung/mini2440/mini2440.c
*/ timer_init, /* 时钟初始化-- cpu/arm920t/s3c24x0/timer.c
*/ env_init,
/*初始化环境变量--common/env_flash.c 或common/env_nand.c*/ init_baudrate, /*初始化波特率-- lib_arm/board.c
*/ serial_init, /* 串口初始化-- drivers/serial/serial_s3c24x0.c
*/ console_init_f, /* 控制通讯台初始化阶段1-- common/console.c
*/ display_banner, /*打印U-Boot版本、编译的时间-- gedit lib_arm/board.c
*/ dram_init, /*配置可用的RAM-- board/samsung/mini2440/mini2440.c
*/ display_dram_config, /* 显示RAM大小-- lib_arm/board.c
*/ NULL, }; 其中的board_init函数在board/samsung/mini2440/mini2440.c中定义,该函数设置了MPLLCOM,UPLLCON,以及一些GPIO寄存器的值,还设置了U-Boot机器码和内核启动参数地址
: /*
MINI2440开发板的机器码
*/ gd->bd->bi_arch_number
= MACH_TYPE_MINI2440; /*
内核启动参数地址
*/ gd->bd->bi_boot_params =
0x30000100;
其中的dram_init函数在board/samsung/mini2440/mini2440.c中定义如下: int
dram_init (void) { /* 由于mini2440只有
*/ gd->bd->bi_dram[0].start =
PHYS_SDRAM_1; gd->bd->bi_dram[0].size =
PHYS_SDRAM_1_SIZE; return 0; } mini2440使用2片32MB的SDRAM组成了64MB的内存,接在存储控制器的BANK6,地址空间是0x30000000~0x34000000。 在include/configs/mini2440.h中PHYS_SDRAM_1和PHYS_SDRAM_1_SIZE
分别被定义为0x30000000和0x04000000(64M)。 分析完上述的数据结构,下面来分析start_armboot函数: void start_armboot (void) { init_fnc_t
**init_fnc_ptr; char
*s; …
… /* 计算全局数据结构的地址gd */ gd =
(gd_t*)(_armboot_start - CONFIG_SYS_MALLOC_LEN -
sizeof(gd_t)); …
… memset ((void*)gd, 0,
sizeof (gd_t)); gd->bd =
(bd_t*)((char*)gd - sizeof(bd_t)); memset (gd->bd, 0,
sizeof (bd_t)); gd->flags |=
GD_FLG_RELOC; monitor_flash_len =
_bss_start - _armboot_start; /* 逐个调用init_sequence数组中的初始化函数 */ for (init_fnc_ptr =
init_sequence; *init_fnc_ptr; ++init_fnc_ptr) { if
((*init_fnc_ptr)() != 0) { hang
();
} } /* armboot_start 在cpu/arm920t/start.S 中被初始化为u-boot.lds连接脚本中的_start */ mem_malloc_init
(_armboot_start - CONFIG_SYS_MALLOC_LEN,
CONFIG_SYS_MALLOC_LEN); /* NOR Flash初始化 */ #ifndef CONFIG_SYS_NO_FLASH /* configure available
FLASH banks */ display_flash_config
(flash_init ()); #endif /* CONFIG_SYS_NO_FLASH */ …
… /* NAND Flash 初始化*/ #if defined(CONFIG_CMD_NAND) puts ("NAND: "); nand_init(); /* go init the NAND
*/ #endif …
… /*配置环境变量,重新定位 */ env_relocate
(); …
… /* 从环境变量中获取IP地址 */ gd->bd->bi_ip_addr
= getenv_IPaddr ("ipaddr"); stdio_init (); /* get the devices list going.
*/ jumptable_init
(); …
… console_init_r (); /* fully init console as a device
*/ …
… /* enable exceptions
*/ enable_interrupts
(); #ifdef CONFIG_USB_DEVICE
usb_init_slave(); #endif /* Initialize from
environment */ if ((s = getenv
("loadaddr")) != NULL) { load_addr =
simple_strtoul (s, NULL, 16); } #if defined(CONFIG_CMD_NET) if ((s = getenv
("bootfile")) != NULL) { copy_filename
(BootFile, s, sizeof (BootFile)); } #endif …
… /* 网卡初始化 */ #if defined(CONFIG_CMD_NET) #if defined(CONFIG_NET_MULTI) puts ("Net: "); #endif
eth_initialize(gd->bd); … … #endif /* main_loop() can
return to retry autoboot, if so just run it again. */ for (;;)
{ main_loop
(); } /* NOTREACHED - no way
out of command loop except booting */ } main_loop函数在common/main.c中定义。一般情况下,进入main_loop函数若干秒内没有 1.1.3 U-Boot启动Linux过程
U-Boot使用标记列表(tagged list)的方式向Linux传递参数。标记的数据结构式是tag,在U-Boot源代码目录include/asm-arm/setup.h中定义如下: struct tag_header { u32 size; /* 表示tag数据结构的联合u实质存放的数据的大小*/ u32 tag; /* 表示标记的类型 */ }; struct tag { struct tag_header
hdr; union
{ struct
tag_core
core; struct
tag_mem32 mem; struct
tag_videotext
videotext; struct
tag_ramdisk
ramdisk; struct
tag_initrd initrd; struct
tag_serialnr
serialnr; struct
tag_revision
revision; struct
tag_videolfb
videolfb; struct
tag_cmdline
cmdline;
/* * Acorn specific */ struct
tag_acorn acorn;
/* * DC21285 specific */ struct
tag_memclk
memclk; }
u; }; U-Boot使用命令bootm来启动已经加载到内存中的内核。而bootm命令实际上调用的是do_bootm函数。对于Linux内核,do_bootm函数会调用do_bootm_linux函数来设置标记列表和启动内核。do_bootm_linux函数在lib_arm/bootm.c 中定义如下: 59 int do_bootm_linux(int
flag, int argc, char *argv[], bootm_headers_t *images) 60 { 61 bd_t
*bd = gd->bd; 62 char
*s; 63 int
machid = bd->bi_arch_number; 64
void (*theKernel)(int zero,
int arch, uint params); 65 66 #ifdef
CONFIG_CMDLINE_TAG 67 char *commandline = getenv
("bootargs"); /* U-Boot环境变量bootargs */ 68
#endif …
… 73 theKernel = (void (*)(int, int,
uint))images->ep; /* 获取内核入口地址 */ …
… 86 #if defined
(CONFIG_SETUP_MEMORY_TAGS) || \ 87 defined
(CONFIG_CMDLINE_TAG) || \ 88 defined
(CONFIG_INITRD_TAG) || \ 89 defined
(CONFIG_SERIAL_TAG) || \ 90 defined
(CONFIG_REVISION_TAG) || \ 91 defined (CONFIG_LCD)
|| \ 92 defined
(CONFIG_VFD) 93 setup_start_tag (bd); /*
设置ATAG_CORE标志 */ …
… 100 #ifdef
CONFIG_SETUP_MEMORY_TAGS 101 setup_memory_tags (bd); /* 设置内存标记 */ 102
#endif 103 #ifdef
CONFIG_CMDLINE_TAG 104 setup_commandline_tag (bd,
commandline); /* 设置命令行标记 */ 105
#endif …
… 113 setup_end_tag (bd); /* 设置ATAG_NONE标志 */
114
#endif 115 116 /* we assume that the kernel is in place
*/ 117 printf ("\nStarting kernel
...\n\n"); …
… 126 cleanup_before_linux (); /* 启动内核前对CPU作最后的设置 */ 127 128 theKernel (0, machid,
bd->bi_boot_params); /*
调用内核 */ 129 /* does not return */ 130 131 return 1; 132 } 其中的setup_start_tag,setup_memory_tags,setup_end_tag函数在lib_arm/bootm.c中定义如下: (1)setup_start_tag函数 static void setup_start_tag (bd_t *bd) { params = (struct tag *)
bd->bi_boot_params; /* 内核的参数的开始地址 */ params->hdr.tag =
ATAG_CORE; params->hdr.size =
tag_size (tag_core); params->u.core.flags
= 0;
params->u.core.pagesize = 0;
params->u.core.rootdev = 0; params = tag_next
(params); } 标记列表必须以ATAG_CORE开始,setup_start_tag函数在内核的参数的开始地址设置了一个ATAG_CORE标记。 (2)setup_memory_tags函数 static void setup_memory_tags (bd_t *bd) { int
i; /*设置一个内存标记 */ for (i = 0; i <
CONFIG_NR_DRAM_BANKS; i++) {
params->hdr.tag = ATAG_MEM;
params->hdr.size = tag_size (tag_mem32);
params->u.mem.start = bd->bi_dram[i].start;
params->u.mem.size = bd->bi_dram[i].size; params = tag_next
(params); } } setup_memory_tags函数设置了一个ATAG_MEM标记,该标记包含内存起始地址,内存大小这两个参数。 (3)setup_end_tag函数 static void setup_end_tag (bd_t *bd) { params->hdr.tag =
ATAG_NONE; params->hdr.size =
0; } 标记列表必须以标记ATAG_NONE结束,setup_end_tag函数设置了一个ATAG_NONE标记,表示标记列表的结束。 U-Boot设置好标记列表后就要调用内核了。但调用内核前,CPU必须满足下面的条件: (1)
CPU寄存器的设置
r0=0
r1=机器码
r2=内核参数标记列表在RAM中的起始地址 (2)
CPU工作模式
禁止IRQ与FIQ中断
CPU为SVC模式 (3)
使数据Cache与指令Cache失效 do_bootm_linux中调用的cleanup_before_linux函数完成了禁止中断和使Cache失效的功能。cleanup_before_linux函数在cpu/arm920t/cpu.中定义: int cleanup_before_linux (void) { /* * this function is called just before we call
linux * it prepares the processor for
linux * * we turn off caches etc
... */ disable_interrupts
(); /* 禁止FIQ/IRQ中断 */ /* turn off I/D-cache
*/ icache_disable(); /* 使指令Cache失效 */ dcache_disable(); /* 使数据Cache失效 */ /* flush I/D-cache
*/ cache_flush(); /* 刷新Cache */ return
0; } 由于U-Boot启动以来就一直工作在SVC模式,因此CPU的工作模式就无需设置了。 do_bootm_linux中: 64 void
(*theKernel)(int zero, int arch, uint params); … … 73 theKernel = (void (*)(int, int,
uint))images->ep; … … 128 theKernel (0, machid,
bd->bi_boot_params); 第73行代码将内核的入口地址“images->ep”强制类型转换为函数指针。根据ATPCS规则,函数的参数个数不超过4个时,使用r0~r3这4个寄存器来传递参数。因此第128行的函数调用则会将0放入r0,机器码machid放入r1,内核参数地址bd->bi_boot_params放入r2,从而完成了寄存器的设置,最后转到内核的入口地址。 到这里,U-Boot的工作就结束了,系统跳转到Linux内核代码执行。 1.1.4 U-Boot添加命令的方法及U-Boot命令执行过程
下面以添加menu命令(启动菜单)为例讲解U-Boot添加命令的方法。 (1)
建立common/cmd_menu.c 习惯上通用命令源代码放在common目录下,与开发板专有命令源代码则放在board/<board_dir>目录下,并且习惯以“cmd_<命令名>.c”为文件名。 (2)
定义“menu”命令 在cmd_menu.c中使用如下的代码定义“menu”命令: _BOOT_CMD( menu, 3,
0,
do_menu, "menu - display a menu,
to select the items to do something\n", " - display a menu, to
select the items to do something" ); 其中U_BOOT_CMD命令格式如下: U_BOOT_CMD(name,maxargs,rep,cmd,usage,help) 各个参数的意义如下: name:命令名,非字符串,但在U_BOOT_CMD中用“#”符号转化为字符串
maxargs:命令的最大参数个数 rep:是否自动重复(按Enter键是否会重复执行) cmd:该命令对应的响应函数 usage:简短的使用说明(字符串) help:较详细的使用说明(字符串) 在内存中保存命令的help字段会占用一定的内存,通过配置U-Boot可以选择是否保存help字段。若在include/configs/mini2440.h中定义了CONFIG_SYS_LONGHELP宏,则在U-Boot中使用help命令查看某个命令的帮助信息时将显示usage和help字段的内容,否则就只显示usage字段的内容。 U_BOOT_CMD宏在include/command.h中定义: #define U_BOOT_CMD(name,maxargs,rep,cmd,usage,help)
\ cmd_tbl_t __u_boot_cmd_##name Struct_Section = {#name, maxargs, rep,
cmd, usage, help} “##”与“#”都是预编译操作符,“##”有字符串连接的功能,“#”表示后面紧接着的是一个字符串。 其中的cmd_tbl_t在include/command.h中定义如下: struct cmd_tbl_s { char *name; /* 命令名
*/ int maxargs; /* 最大参数个数
*/ int repeatable; /* 是否自动重复
*/ int (*cmd)(struct cmd_tbl_s *, int, int,
char *[]); /* 响应函数
*/ char *usage; /* 简短的帮助信息
*/ #ifdef
CONFIG_SYS_LONGHELP char *help; /* 较详细的帮助信息
*/ #endif #ifdef CONFIG_AUTO_COMPLETE /* 自动补全参数
*/ int (*complete)(int argc, char *argv[],
char last_char, int maxv, char *cmdv[]); #endif }; typedef struct cmd_tbl_s
cmd_tbl_t; 一个cmd_tbl_t结构体变量包含了调用一条命令的所需要的信息。 其中Struct_Section在include/command.h中定义如下: #define Struct_Section
__attribute__ ((unused,section (".u_boot_cmd"))) 凡是带有__attribute__ ((unused,section (".u_boot_cmd"))属性声明的变量都将被存放在".u_boot_cmd"段中,并且即使该变量没有在代码中显式的使用编译器也不产生警告信息。 在U-Boot连接脚本u-boot.lds中定义了".u_boot_cmd"段: . =
.; __u_boot_cmd_start =
.; /*将 __u_boot_cmd_start指定为当前地址 */ .u_boot_cmd : {
*(.u_boot_cmd) } __u_boot_cmd_end =
.; /* 将__u_boot_cmd_end指定为当前地址 */ 这表明带有“.u_boot_cmd”声明的函数或变量将存储在“u_boot_cmd”段。这样只要将U-Boot所有命令对应的cmd_tbl_t变量加上“.u_boot_cmd”声明,编译器就会自动将其放在“u_boot_cmd”段,查找cmd_tbl_t变量时只要在__u_boot_cmd_start与__u_boot_cmd_end之间查找就可以了。 因此“menu”命令的定义经过宏展开后如下: cmd_tbl_t __u_boot_cmd_menu __attribute__ ((unused,section
(".u_boot_cmd"))) = {menu, 3, 0, do_menu, "menu - display a menu, to select the
items to do something\n", " - display a menu, to select the items to do
something"} 实质上就是用U_BOOT_CMD宏定义的信息构造了一个cmd_tbl_t类型的结构体。编译器将该结构体放在“u_boot_cmd”段,执行命令时就可以在“u_boot_cmd”段查找到对应的cmd_tbl_t类型结构体。 (3)
实现命令的函数 在cmd_menu.c中添加“menu”命令的响应函数的实现。具体的实现代码略: int do_menu (cmd_tbl_t *cmdtp, int flag, int argc, char
*argv[]) { /* 实现代码略 */ } (4)
将common/cmd_menu.c编译进u-boot.bin 在common/Makefile中加入如下代码: COBJS-$(CONFIG_BOOT_MENU) += cmd_menu.o 在include/configs/mini2440.h加入如代码: #define CONFIG_BOOT_MENU 1 重新编译下载U-Boot就可以使用menu命令了 (5)menu命令执行的过程 在U-Boot中输入“menu”命令执行时,U-Boot接收输入的字符串“menu”,传递给run_command函数。run_command函数调用common/command.c中实现的find_cmd函数在__u_boot_cmd_start与__u_boot_cmd_end间查找命令,并返回menu命令的cmd_tbl_t结构。然后run_command函数使用返回的cmd_tbl_t结构中的函数指针调用menu命令的响应函数do_menu,从而完成了命令的执行。 作者:heaad http://www.cnblogs.com/heaad/ 邮箱:heaad@qq.com 本文摘选自作者所写的一篇文章。转载请注明,水平有限,欢迎拍砖。
|
|