分享

利用异常表处理LINUX内核态缺页异v常

 木芙蓉的图书馆 2011-07-21

在程序的执行过程中,因为遇到某种障碍而使 CPU 无法最终访问到相应的物理内存单元,即无法完成从虚拟地址到物理地址映射的时候,CPU 会产生一次缺页异常,从而进行相应的缺页异常处理。基于 CPU 的这一特性,Linux 采用了请求调页(Demand Paging)和写时复制(Copy On Write)的技术。

  1. 请求调页是一种动态内存分配技术,它把页框的分配推迟到不能再推迟为止。这种技术的动机是:进程开始运行的时候并不访问地址空间中的全部内容。事实上,有 一部分地址也许永远也不会被进程所使用。程序的局部性原理也保证了在程序执行的每个阶段,真正使用的进程页只有一小部分,对于临时用不到的页,其所在的页 框可以由其它进程使用。因此,请求分页技术增加了系统中的空闲页框的平均数,使内存得到了很好的利用。从另外一个角度来看,在不改变内存大小的情况下,请 求分页能够提高系统的吞吐量。当进程要访问的页不在内存中的时候,就通过缺页异常处理将所需页调入内存中。

  2. 写时复制主要应用于系统调用fork,父子进程以只读方式共享页框,当其中之一要修改页框时,内核才通过缺页异常处理程序分配一个新的页框,并将页框标记 为可写。这种处理方式能够较大的提高系统的性能,这和Linux创建进程的操作过程有一定的关系。在一般情况下,子进程被创建以后会马上通过系统调用 execve将一个可执行程序的映象装载进内存中,此时会重新分配子进程的页框。那么,如果fork的时候就对页框进行复制的话,显然是很不合适的。

  在上述的两种情况下出现缺页异常,进程运行于用户态,异常处理程序可以让进程从出现异常的指令处恢复执行,使用户感觉不到异常的发生。当然,也 会有异常无法正常恢复的情况,这时,异常处理程序会进行一些善后的工作,并结束该进程。也就是说,运行在用户态的进程如果出现缺页异常,不会对操作系统核 心的稳定性造成影响。那么对于运行在核心态的进程如果发生了无法正常恢复的缺页异常,应该如何处理呢?是否会导致系统的崩溃呢?是否能够解决好内核态缺页 异常对于操作系统核心的稳定性来说会产生很大的影响,如果一个误操作就会造成系统的Oops,这对于用户来说显然是不能容忍的。本文正是针对这个问题,介 绍了一种Linux内核中所采取的解决方法。

  在读者继续往下阅读之前,有一点需要先说明一下,本文示例中所选的代码取自于Linux-2.4.0,编译环境是gcc-2.96,objdump的版本是2.11.93.0.2,具体的版本信息可以通过以下的命令进行查询:

$ gcc -v
Reading specs from /usr/lib/gcc-lib/i386-redhat-linux/2.96/specs
gcc version 2.96 20000731 (Red Hat Linux 7.3 2.96-110)
$ objdump -v
GNU objdump 2.11.93.0.2 20020207
Copyright 2002 Free Software Foundation, Inc.

   GCC的扩展功能

  由于本文中会用到GCC的扩展功能,即汇编器as中提供的.section伪操作,在文章开始之前我再作一个简要的介绍。此伪操作对于不同的可 执行文件格式有不同的解释,我也不一一列举,仅对我们所感兴趣的Linux中常用的ELF格式的用法加以描述,其指令格式如下:

 .section NAME[, "FLAGS"]
  
  大家所熟知的C程序一般由以下的几个部分组成:代码段(text section)、初始化数据段(data section)、非初始化数据段(bss section)、栈(heap)以及堆(stack),具体的地址空间布局可以参考《UNIX环境高级编程》一书。

  在Linux内核中,通过使用.section的伪操作,可以把随后的代码汇编到一个由NAME指定的段中。而FLAGS字段则说明了该段的属性,它可以用下面介绍的单个字符来表示,也可以是多个字符的组合。

'a' 可重定位的段;
  'w' 可写段;
  'x' 可执行段;
  'W' 可合并的段;
  's' 共享段。

  举个例子来说明,读者在后面会看到的:.section .fixup, "ax"。这样的一条指令定义了一个名为.fixup的段,随后的指令会被加入到这个段中,该段的属性是可重定位并可执行。

  内核缺页异常处理
  运行在核心态的进程经常需要访问用户地址空间的内容,但是谁都无法保证内核所得到的这些从用户空间传入的地址信息是"合法"的。为了保护内核不受错误信息的攻击,需要验证这些从用户空间传入的地址信息的正确性。

  在老版本的Linux中,这个工作是通过函数verify_area来完成的:

extern inline int verify_area(int type, const void * addr, unsigned long size)

  该函数验证了是否可以以type中说明的访问类型(read or write)访问从地址addr开始、大小为size的一块虚拟存储区域。为了做到这一点,verify_read首先需要找到包含地址addr的虚拟存 储区域(vma)。一般的情况下(正确运行的程序)这个测试都会成功返回,在少数情况下才会出现失败的情况。也就是说,大部分的情况下内核在一些无用的验 证操作上花费了不算短的时间,这从操作系统运行效率的角度来说是不可接受的。

  为了解决这个问题,现在的Linux设计中将验证的工作交给虚存中的硬件设备来完成。当系统启动分页机制以后,如果一条指令的虚拟地址所对应的 页框(page frame)不在内存中或者访问的类型有错误,就会发生缺页异常。处理器把引起缺页异常的虚拟地址装到寄存器CR2中,并提供一个出错码,指示引起缺页异 常的存储器访问的类型,随后调用Linux的缺页异常处理函数进行处理。

  Linux中进行缺页异常处理的函数如下:

asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code)
{
  ……………………
  __asm__("movl %%cr2,%0":"=r" (address));
  ……………………
  vma = find_vma(mm, address);
  if (!vma)
  goto bad_area;
  if (vma->vm_start <= address)
  goto good_area;
  if (!(vma->vm_flags & VM_GROWSDOWN))
  goto bad_area;
  if (error_code & 4) {
  if (address + 32 < regs->esp)
  goto bad_area;
  ……………………
bad_area:
  ……………………
no_context:
/* Are we prepared to handle this kernel fault? */
  if ((fixup = search_exception_table(regs->eip)) != 0) {
  regs->eip = fixup;
  return;
  }
  ………………………
}

  首先让我们来看看传给这个函数调用的两个参数:它们都是通过entry.S在堆栈中建立的(arch/i386/kernel /entry.S),参数regs指向保存在堆栈中的寄存器,error_code中存放着异常的出错码,具体的堆栈布局参见图一(堆栈的生成过程请参考 《Linux内核源代码情景分析》一书)

  该函数首先从CPU的控制寄存器CR2中获取出现缺页异常的虚拟地址。由于缺页异常处理程序需要处理的缺页异常类型很多,分支也很复杂。基于本文的主旨,我们只关心以下的几种内核缺页异常处理的情况:

  1." 程序要访问的内核地址空间的内容不在内存中,先跳转到标号vmalloc_fault,如果当前访问的内容所对应的页目录项不在内存中,再跳转到标号no_context;

  2. 缺页异常发生在中断或者内核线程中,跳转到标号no_context;

  3. 程序在核心态运行时访问用户空间的数据,被访问的数据不在内存中

  a) 出现异常的虚拟地址在进程的某个vma中,但是系统内存无法分配空闲页框(page frame),则先跳转到标号out_of_memory,再跳转到标号no_context;

  b) 出现异常的虚拟地址不属于进程任一个vma,而且不属于堆栈扩展的范畴,则先跳转到标号bad_area,最终也是到达标号no_context。

  从上面的这几种情况来看,我们关注的焦点最后集中到标号no_context处,即对函数search_exception_table的调 用。这个函数的作用就是通过发生缺页异常的指令(regs->eip)在异常表(exception table)中寻找下一条可以继续运行的指令(fixup)。这里提到的异常表包含一些地址对,地址对中的前一个地址表示出现异常的指令的地址,后一个表 示当前一个指令出现错误时,程序可以继续得以执行的修复地址。

  如果这个查找操作成功的话,缺页异常处理程序将堆栈中的返回地址(regs->eip)修改成修复地址并返回,随后,发生异常的进程将按照fixup中安排好的指令继续执行下去。当然,如果无法找到与之匹配的修复地址,系统只有打印出出错信息并停止运作。

  那么,这个所谓的修复地址又是如何生成的呢?是系统自动生成的吗?答案当然是否定的,这些修复指令都是编程人员通过as提供的扩展功能写进内核源码中的。下面我们就来分析一下其实现机制。


    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多