(一)静息电位产生机制静息电位指安静时存在于细胞两侧的外正内负的电位差。其形成原因是膜两侧离子分布不平衡及膜对K+有较高的通透能力。细胞内K+浓度和带负电的蛋白质浓度都大于细胞外(而细胞外Na+和Cl+浓度大于细胞内),但因为细胞膜只对K+有相对较高的通透性,K+顺浓度差由细胞内移到细胞外,而膜内带负电的蛋白质离子不能透出细胞,于是K+离子外移造成膜内变负而膜外变正。外正内负的状态一方面可随K+的外移而增加,另一方面,K+外移形成的外正内负将阻碍K+的外移(正负电荷互相吸引,而相同方向电荷则互相排斥)。最后达到一种K+外移(因浓度差) 和阻碍K+外移(正负电荷互相吸引,而相同方向电荷则相互排斥)。最后达到一种K+外移(因浓度差)和阻碍K+外移(因电位差)相平衡的状态,这是的膜电位称为K+平衡电位,实际上,就是(或接近于)安静时细胞膜外的电位差。
(二)动作电位的产生机制 动作电位上升支主要由Na+内流形成,接近于Na+的电-化学平衡电位。 1.细胞内外Na+和K+的分布不均匀,细胞外高Na+而细胞内高K+。 2.细胞兴奋时,膜对Na+有选择性通透,Na+顺浓度梯度内流,形成锋电位的上升支。 3.K+外流增加形成了动作电位的下降支。 在不同的膜电位水平或动作电位发生过程中,Na+通道呈现三种基本功能状态:①备用状态:其特征是通道呈关闭状态,但对刺激可发生反应而迅速开放,因此,被称作备用状态;②激活状态:此时通道开放,离子可经通道进行跨膜扩散;③失活状态:通道关闭,离子不能通过,即使再强的刺激也不能使通道开放。细胞在静息状态即未接受刺激时,通道处于备用状态。当刺激作用时,通道被激活而开放。多数通道开放的时间很短,如产生锋电位上升支的Na+通道开放时间仅为1-2ms,随即进入失活状态。必须经过一段时间,通道才能由失活状态恢复至静息的备用状态。通道的功能状态,决定着细胞是否具有产生动作电位的能力,与不应期有密切联系。
(三)细胞膜K的平衡电位为什么是负的(-90--100)? 胞外K少,胞内K多,那么膜外为零电位的话,膜内应该为正电位?可是平衡电位却是负的,为什么? 首先,你的认识不对,细胞内确实K多,但是细胞外Na多,都是带正电的离子。而且还有很多其他离子。所以看正负,不是这么看的。 (四)什么是电位差? 就像一根1米高的自来水管一样,最高点处的水相对于最低点处的水就有一个水位差,水位差就会使得高水位的水向低水位流动。同样在导体的不同位置会有电位差,电流会从高电位流向低电位,当然前提是存在一个闭合回路。 (五) 钾离子进出细胞膜是主动运输? 1.首先明确:细胞内的K+浓度大大高于细胞外,而细胞外Na+浓度大大高于细胞内 2.当神经冲动传导时,要从静息电位(内负外正)到动作电位(内正外负),需要吸Na+排K+,此时k+是顺着浓度梯度外排的(其实Na+也是),所以不需要消耗ATP,是协助扩散 3.当从动作电位恢复到静息电位时,需要排Na+吸k+,此时是逆着浓度梯度的,就需要消耗ATP,是主动运输,这也是我们经常看到的钾钠泵 |
|