我们期待的是什么?有哪些些革新性的想法已经在成熟使用?还有哪些创意地表现数据的方式是我们从未想过的?
让我们看看最有趣和最现代的数据可视化方法,以及一些相关文章、资源和工具。
1. Mindmaps 概念图Trendmap 2007 (趋势地图 2007)
Informationarchitects.jp 依据分类、相似性、成功度、知名度和前景,为当年互联网上最成功的200个网站制作了一张趋势地图。这些网站以前显然从未以这种方式建立过联系。相当详尽。
译注:(这是一个著名的数据可视化创意,作者通过改造东京地铁地图,将站点设计成地铁站,每种网站应用类型是一条地铁线。比如粉红色代表分享类网站,紫红色代表工具类,大红色代表技术网站,柠檬黄色代表知识类网站……当然如果你对东京的城市地理状况有所了解,看这张地图时会露出更多会心的微笑。设计师在图中安排了大量暗喻和巧合,比如google从涩谷移到了新宿的位置,而Youtube已经控制了涩谷地区。涩谷在通常理解中,代表年轻人出没的喧嚷的地方。而新宿代表黑社 会控制,很酷的地方。微软移到了池袋,雅虎移到了上野,维基百科在新桥(一个遍布头脑清醒上班族的地方)。日本的网站主要集中在金融路线附近,北部的站点线(山口线)上的项目多数比较“无聊”。等等)

2. Displaying News 新闻展示
Newsmap(新闻地图)是google新闻聚合器上实时的新闻反馈的可视化呈现。数据块的大小对应了新闻受欢迎的程度。
译注:(Newsmap反映的是google新闻聚合器实时更新的新闻。这种数据可视图基于treemap树状图的算法,适合表现大量信息的聚合。用颜色、颜色深度、标题字号、区块面积来展现归并后的信息。打破空间限制,帮助用户快速识别、分类和认知新闻信息、平面而直观地展现不断变化的信息片段。)

Voyage是一个rss阅读器。它在屏幕中心呈现最新更新的新闻。新闻可以缩放和退出,有一条基于时间轴的导航。
译注:(Voyage根据当前时间点形成一条坐标轴,使用了三维效果来分层次展现当前的资讯和新闻点,将信息的时间要素呈现地非常生动。可通过rss地址控制订制信息来源。)

Digg BigSpy 将最受欢迎的文章放在顶部,字号越大代表支持者越多。
译注:(digglab使用5种动态的数据可视化方式来表现信息的数据变化状态。Digg BigSpy是试验项目其中之一,最新被digg的新闻会向下滚动更新屏幕,digg数越高,标题字体越大。在版面中使用字号变化是传统媒体的表现手段,在这里和实时滚动的效果结合,很有冲击力。)

Digg Stack: 根据用户的digg数将文章排列成许多柱状条,digg数越高,柱型越高。
译注:(Digg Stack同 样也是digg lab的实验性项目之一,将最新/最热/全部的100条digg文章排列成一行柱状图,水平线上的柱形高度代表digg数,水平线下的柱形高度代表评论 数。某篇文章digg数实时增加时,会从屏幕上方掉一个小方块下来,俄罗斯方块那样,溶进该新闻对应的柱形中。点击单个柱体可以分别查看每个时间区间内的 digg指数。这是一个非常有实时感和动感的视觉系统,极好地呈现了数据生成的实时性和聚合性。)
3. Displaying Data 数据展示
Amaztype 图书搜索:根据从亚马逊上采集的数据,将图书的搜索结果根据你所提供的关键字的字母形状进行排列。可以点击单本书查看详细信息。

Flickrtime 也应用了相似的创意。这个工具利用Flickr API 将上传的图片根据当前时间排列成时钟数字的形状。

Time Magazine(时代周刊)使用峰值形状的分布来强调地图上美国人口的稠密程度。

CrazyEgg 使用热图来让您研究您的访客的新闻,通常被点击更多,更受欢迎的区域,使用的更“温暖”的红色来高亮显示。
译注:(CrazyEgg允许注册用户通过提交页面url,显示页面的热点图、获取每个元素的详情、查看原始数据的完整摘要信息。热图是用户行为分析的常见方法,这是一个著名的UE研究分析工具,给UE分析师提供观察用户行为,做出设计改进意见的数据基础。)

Hans Rosling TED Talk (汉斯。罗斯林的TED演讲)瑞典著名教授Hans Rosling发表了一次传统期的演讲,解释了他提出的表现统计数据的新方法。他的趋势分析软件(刚刚被google收购)将复杂的全球趋势、十几年的流行数据转化为生动的动画。用网格上的多彩的泡泡代表亚洲的各个国家,展现全民医疗和财富的状况。用动态的钟型曲线表现国民收入分配的涨伏。在 Rosling的手里,全球趋势——预期寿命、儿童死亡率、贫困率——都变得清晰、直观和有趣。

三视图展示了地球的3个视点: 每个国家使用一个圆形代表,用圆圈的大小来代表军费开支额度,颜色的深度来代表占财政收入的比例,数据的演示非常紧凑和美观。

We Feel Fine(我们感觉很好)根据来自大量blog的统计结果,表现了人类的感情。
译注:(这是一个骇人的项目。。从2005年8月,该项目组从大量页面上记录人类的感情。每个几分钟,系统就会搜索世界上新近发布的blog里包含“我觉得”或“我的感觉”这类短语的文章,记录包含这些短语的句子,并计算出里面c所包含的情绪,是悲伤、快乐、沮丧。这些信息和作者的社会结构、年龄、性别、地理位置以及当时当地的天气一起被保留下来。这个包含了数百万人感情的数据库,每天新增15000~2000条记录,并提供了一系列有趣的接口用于查询和做数据挖掘。上图中的粒子系统是通过接口生成的可视化形式之一,抽取了1500条数据,每条数据是一个粒子,代表每个人的一种情绪。颜色对应情绪类型,比如幸福是亮黄色,悲伤是深蓝色,愤怒是红色,平静的感情是浅绿色。每个粒子的大小和表达情绪的语句的长度关联。)

Visualizing the Power Struggle in Wikipedia(维基百科上:可视化的争议)在热力地图上展示了最受欢迎的文章和被搜索最频繁的请求。
译注:(疑原文有误。heatmap:热力型地图,做用户体验分析的同学可能比较熟悉,是一种使用冷暖色来映射二维变量,以便于做出聚类分析的图像,擅长用于体现频率、密度等。译注:但是下面这两张信息图形使用的是气泡型地图。反映的是wiki百科中争议性词条的修订次数。圆圈越大,修订次数越多。排名前几位的是:耶稣、阿道夫希特勒、2003年10月、任天堂革命、卡特里娜飓风……)


Websites as graphs 图表网站。一个HTML DOM的可视化应用程序,根据url、表格、div标签、图片、表单和其他标签,将网站可视化为信息图形。
译注:(这是一个分析页面源码的项目,使用