配色: 字号:
特殊名词解释
2012-03-11 | 阅:  转:  |  分享 
  
特殊名词解释

1.决策变量值

(1)变量及变量值

在数量标志中,不变的数量标志称为常量或参数,可变的数量标志称为变量。由于变量的函数仍为变量,所以由可变数量标志构造的各种指标也成为变量。变量取值又称为变量值,也就是标志值。

(2)变量的种类?

按变量值是否连续可把变量分成离散变量和连续变量。

离散变量的取值可以按一定次序一一列举,其变量值是以整数位断开的(通常取整数形式)。可以用计数的方法取得。例如人数、设备台数、企业数、骰子点数等等。

连续变量的取值是连续不断的,相邻两值之间可以作无限分割(即其数值可以用小数表示),其数值须用测量或计量的方法取得。如您的身高是多少呢?167cm?167.1cm?或者167.11111cm?像这样根据精确度的不同,测定数值会连续增加的数据叫做连续型变量。此外,还有企业的产值、利润、人的体重、粮食亩产量、平均温度等等都属于连续变量。

2.矢量

物理学解释:又称向量(Vector),最广义指线性空间中的元素。它的名称起源于物理学既有大小又有方向的物理量,通常绘画成箭号,因以为名。例如位移、速度、加速度、力、力矩、动量、冲量等,都是。???????可以用不共面的任意三个向量表示任意一个向量,用不共线的任意两个向量表示与这两个向量共面的任意一个向量。相互垂直的三个单位向量成为一组基底,这三个向量分别用i,j,k表示.?常见的向量运算有:加法,点积(内积)和叉积(外积)。?简单的理解:“矢量和标量的定义如下:(到大学物理中会详细研究)(1)定义或解释:有些物理量,既要由数值大小(包括有关的单位),又要由方向才能完全确定。这些量之间的运算并不遵循一般的代数法则,而遵循特殊的运算法则。这样的量叫做物理矢量。有些物理量,只具有数值大小(包括有关的单位),而不具有方向性。这些量之间的运算遵循一般的代数法则。这样的量叫做物理标量。(2)说明:矢量之间的运算要遵循特殊的法则。矢量加法一般可用平行四边形法则。由平行四边形法则可推广至三角形法则、多边形法则或正交分解法等。矢量减法是矢量加法的逆运算,一个矢量减去另一个矢量,等于加上那个矢量的负矢量。A-B=A+(-B)。矢量的乘法。矢量和标量的乘积仍为矢量。矢量和矢量的乘积,可以构成新的标量,矢量间这样的乘积叫标积;也可构成新的矢量,矢量间这样的乘积叫矢积。例如,物理学中,功、功率等的计算是采用两个矢量的标积。W=F·S,P=F·v,物理学中,力矩、洛仑兹力等的计算是采用两个矢量的矢积。M=r×F,F=qv×B。物理定律的矢量表达跟坐标的选择无关,矢量符号为表述物理定律提供了简单明了的形式,且使这些定律的推导简单化,因此矢量是学习物理学的有用工具。”个人的理解:矢量规律的总结,基于人们对空间广义的对称性的理解。矢量所根据的对平移与转动的对称性(不变性)。对迄今发现的所有规律均有效。使用矢量分析方法,较数学分析,相当于知道结论推过程,十分方便。这种方法具有极大的创造性,对物理研究或许有所启发。矢量在计算机中的应用:矢量图像矢量图像,也称为面向对象的图像或绘图图像,在数学上定义为一系列由线连接的点。矢量文件中的图形元素称为对象。每个对象都是一个自成一体的实体,它具有颜色、形状、轮廓、大小和屏幕位置等属性。既然每个对象都是一个自成一体的实体,就可以在维持它原有清晰度和弯曲度的同时,多次移动和改变它的属性,而不会影响图例中的其它对象。这些特征使基于矢量的程序特别适用于图例和三维建模,因为它们通常要求能创建和操作单个对象。基于矢量的绘图同分辨率无关。这意味着它们可以按最高分辨率显示到输出设备上。何谓位图图像???与上述基于矢量的绘图程序相比,像Photoshop这样的编辑照片程序则用于处理位图图像。当您处理位图图像时,可以优化微小细节,进行显著改动,以及增强效果。位图图像,亦称为点阵图像或绘制图像,是由称作像素(图片元素)的单个点组成的。这些点可以进行不同的排列和染色以构成图样。当放大位图时,可以看见赖以构成整个图像的无数单个方块。扩大位图尺寸的效果是增多单个像素,从而使线条和形状显得参差不齐。然而,如果从稍远的位置观看它,位图图像的颜色和形状又显得是连续的。由于每一个像素都是单独染色的,您可以通过以每次一个像素的频率操作选择区域而产生近似相片的逼真效果,诸如加深阴影和加重颜色。缩小位图尺寸也会使原图变形,因为此举是通过减少像素来使整个图像变小的。同样,由于位图图像是以排列的像素集合体形式创建的,所以不能单独操作(如移动)局部位图。??什么是矢量图形?在介绍矢量图形之前,我们首先阐述矢量对象的概念。矢量对象是以矢量的形式,即用方向和大小来综合表示目标的形式描述的对象。例如画面上的一段直线,一个矩形,一个点,一个圆,一个填充的封闭区域……等等。矢量图形文件就是由这些矢量对象组合而成的描述性文件。矢量图形则是计算机软件通过一定算法,将矢量对象的描述信息在显示终端上重绘的结果。什么是栅格图???栅格图是基于一套行列组成的方格数据模型,使用一组方格描述地理要素,每一个方格的值代表一个现实的地理要素。??栅格数据适合于做空间分析和图象数据格式的存储,不适合做不连续的数据处理。什么是数字栅格地图(DRG)??数字栅格地图(DRG)是纸质地图的栅格数字化产品。每幅图经扫描、集合纠正、图幅处理与数据的压缩处理,形成在内容、精度和色彩上与地图保持一致的栅格文件。什么是栅格图像???栅格图像,也称光栅图像,是指在空间和亮度上都已经离散化了的图像。我们可以把一幅栅格图像考虑为一个矩阵,矩阵中的任一元素对应于图像中的一个点,而相应的值对应于该点的灰度级,数字矩阵中的元素叫做像素。数字图像与马赛克拼图相似,是由一系列像素组成的矩形图案,如果所有的像素有且仅有两个灰度级(黑或白),则称其为二值图像,也即位图;否者称其为灰度图像或彩色图像。什么是矢量图形?在介绍矢量图形之前,我们首先阐述矢量对象的概念。矢量对象是以矢量的形式,即用方向和大小来综合表示目标的形式描述的对象。例如画面上的一段直线,一个矩形,一个点,一个圆,一个填充的封闭区域……等等。矢量图形文件就是由这些矢量对象组合而成的描述性文件。矢量图形则是计算机软件通过一定算法,将矢量对象的描述信息在显示终端上重绘的结果。什么是矢量图???矢量图是基于直角坐标系统,用点、线、多边形描述地理要素的数据模型或数据结构。每一个地理要素由一系列有顺序的的x、y坐标描述,这些要素与属性相结合。为什么要将栅格地图矢量化???纸质地图经扫描仪扫描后,初步保存为栅格图像(常见的格式有TIFF、BMP、PCX、JPEG等)。栅格图像在地理应用领域有着这样的缺陷:首先,栅格图像文件对图像的每一像素点(不管前景或背景像素)都要保存,所以其存储开销特别大。另外,我们不能对图像上的任一对象(曲线、文字或符号)进行属性修改、拷贝、移动及删除等图形编辑操作,更不能进行拓扑求解,只能对某个矩形区域内的所有像素同时进行图像编辑操作。此外,当图像进行放大或缩小显示时,图像信息会发生失真,特别是放大时图像目标的边界会发生阶梯效应,正如点阵汉字放大显示发生阶梯效应的原理一样。而矢量图形则不同。在矢量图形中每个目标均为单个矢量单位(点、线、面)或多个矢量单位的结合体。基于这样的数据结构,我们便可以很方便地在地图上编辑各个地物,将地物归类,以及求解各地物之间的空间关系。并有利于地图的浏览、输出。矢量化则是利用数字图像处理算法,将源图上的各种栅格阵列识别为矢量对象,最后以一定格式保存的过程。矢量图形在工业、制图业、土地利用部门等行业都有广泛的应用。在这些领域的许多成功软件都基于矢量图形,或离不开矢量图形的参与,如AutoCAD、ARC/INFO、CorelDraw、GeoStar等等。(摘自地理信息系统论坛网栅格化也就是将图象像素化将矢量图转化成位图索引模式就是单色索引颜色的色彩深度为8位,颜色数量256图元是由线段、圆、弧、文字和一些曲线等图形元素和属性元素组成的一个整体。纯矢量图像格式就叫图元比如微软的WMF是保存文件用的增强型图元文件"是32位格式,可以同时包含矢量信息和位图信息。此格式是对"Windows图元文件格式"的改进,包含了一些扩展功能,例如,下面的功能:?内置的缩放比例信息?与文件一起保存的内置说明?调色板和设备独立性方面的改进EMF格式是可扩展的格式,这意味着程序员可以修改原始规范以添加功能或满足特定的需要。此修改可能会导致不同类型的EMF图片之间不兼容。优点:?可扩展的文件格式?与WMF相比,经过改进的功能缺点:?可扩展性会导致许多不同类型的EMF图片,并不是所有EMF文件都与所有样将现实中的一个物体,比如,一只花瓶,一个足球,甚至一架大的战斗机,在电脑屏幕上显示呢?我们一般会这样做:1.先把该物体放在一个虚拟的三维坐标系中,该坐标称为局部坐标系(LocalSpace),一般以物体的中心作为坐标原点,采用左手坐标系。2.然后,对坐标系中的物体进行点采样(PointSample),这些采样点按一定顺序连接成为一系列的小平面(三角形或共面的四边形,五边形等),这些小平面称为(Primitive),3D引擎会处理每一个,称为一个独立的渲染单位。这样取样后的物体看起来图元像是由许许多多的三角形,四边形或五边形组成的,就像网一样,我们称为一个网格(Mesh).这个采样过程又可称为物图元体的3D建模。当然现在都有功能非常强大的3D建模工具,例如,3DMax,3DCool等建模工具,省去了我们这方面的许多工作“图元”autodesk公司为了区分不同数据信息而对某一类数据所取的名字。图元指的图形数据,所对应的就绘图界面上看得见的实体。在autocad原版的英文中,图元的名字为“entity”,翻译为中文有“图素”“图元”“实体”等称呼。在autocad中文帮助中多用“图元”,而在autolisp编程类书籍中多用“实体”称谓。出处不同,称谓有少许差别。与图元对应的图面看不见的信息,如图层,文字样式,标注样式等等,这些信息被称为“对象”,英文名字为“object”。对象多为图形的属性或绘图界面的信息,针对的不个别单个的图形,可以指定单个图形为不同的属性,却不能通过单个图形修改属性的信息。修改“对象”的信息要通过特定的命令,如layer,style等。一个计算机文本处理系统输入击键输出(glyph),图元是在纸张或计算机屏幕上被组合的小图片。规则:规定出来供大家共同遵守的制度或章程。(普遍性)规则,是以一种可持续可预测的方式运用信息的系统性决策程序。规则是多种多样的。(一)在程序设计中,为完成某一功能所需的一段程序或子程序;或指能由编译程序、装配程序等处理的独立程序单位;或指大型软件系统的一部分。模块有各种类型,如单元操作模块(换热器、精馏塔、压缩机等)、计算方法模块(加速收敛算法、最优化算法等)、物理化学性质模块(汽液相平衡计算、热焓计算等)等。(二)可以组合和变换的标准单元硬件。线性回归用来检测一非独立变量(因变量)与一组独立变量(自变量)之间的关系。例如,如果你可以通过一名教师的年龄、受教育程度、工作年限以及教学领域(自变量)来推测这名教师的教学效果。

卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全包含噪声的测量(英文:measurement)中,估计动态系统的状态。卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列预测出物体的坐标位置及速度.在很多工程应用(雷达,计算机视觉)中都可以找到它的身影.同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要话题.卡尔曼全名RudolfEmilKalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。简单来说,卡尔曼滤波器是一个“optimalrecursivedataprocessingalgorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统。一般地说,社会系统、经济系统、生态系统都是灰色系统。例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。没有确定的映射关系(函数关系)的系统是灰色系统。灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。灰色系统grey(obscure)system指那些既有已知参数又有未知参数的系统,如:人体就是既有白色参数(已知的外型参数)又有黑色参数(未知的人体穴位功能)的灰色系统。其理论作用是:1)实践中摸索出来的规律过去不容易用一般控制理论解释的,可以用新系统理论进行解释、提高,从而使软件更完整、深入、量化;2)可以得到新的控制系统;3)有助于促进社会系统与经济系统的量化研究。灰色关联分析理论及方法对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法[16]。灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态历程分析。灰色系统关联分析的具体计算步骤如下[17]:(1)确定反映系统行为特征的参考数列和影响系统行为的比较数列反映系统行为特征的数据序列,称为参考数列。影响系统行为的因素组成的数据序列,称比较数列。(2)对参考数列和比较数列进行无量纲化处理由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。(3)求参考数列与比较数列的灰色关联系数ξ(Xi)所谓关联程度,实质上是曲线间几何形状的差别程度。因此曲线间差值大小,可作为关联程度的衡量尺度。对于一个参考数列X0有若干个比较数列X1,X2,…,Xn,各比较数列与参考数列在各个时刻(即曲线中的各点)的关联系数ξ(Xi)可由下列公式算出:其中ζ为分辨系数,0<ζ<1。是第二级最小差,记为Δmin。是两级最大差,记为Δmax。为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。记为Δoi(k)。所以关联系数ξ(Xi)也可简化如下列公式:(4)求关联度ri因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:(5)排关联序因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。将m个子序列对同一母序列的关联度按大小顺序排列起来,便组成了关联序,记为{x},它反映了对于母序列来说各子序列的“优劣”关系。若r0i>r0j,则称{xi}对于同一母序列{x0}优于{xj},记为{xi}>{xj};若r0i表1代表旗县参考数列、比较数列特征值。CoreIDRAW是Corel公司出口的一种矢量绘图软件。可为用户提供功能强大的工具,通过减少工作中的某些点击、步骤的数量来节省时间。VPstudio是图形矢量化软件,能将扫描得到的光栅文件转换成CAD矢量格式,适用于各种规格的草案、文档、技术图纸和地图处理。VP将自动和交互式矢量化的优点溶为一体,用其独特、高效强大的编辑功能将光栅文件完美地转换成100%CAD软件兼容的矢量格式。VPstudio既可以进行光栅编辑,又可以进行全自动矢量化;还支持彩色及灰度扫描,并可与AutoCAD动态连接,提供RasterDWG驱动程序,使光栅和矢量图形可以存储于同一DWG文件中,极大地提供旧图利用效率。ODBC(OpenDatabaseConnectivity,开放数据库互连)是微软公司开放服务结构(WOSA,WindowsOpenServicesArchitecture)中有关数据库的一个组成部分,它建立了一组规范,并提供了一组对数据库访问的标准API(应用程序编程接口)。这些API利用SQL来完成其大部分任务。ODBC本身也提供了对SQL语言的支持,用户可以直接将SQL语句送给ODBC。一个基于ODBC的应用程序对数据库的操作不依赖任何DBMS,不直接与DBMS打交道,所有的数据库操作由对应的DBMS的ODBC驱动程序完成。也就是说,不论是FoxPro、Access,MYSQL还是Oracle数据库,均可用ODBCAPI进行访问。由此可见,ODBC的最大优点是能以统一的方式处理所有的数据库。一个完整的ODBC由下列几个部件组成:应用程序(Application)。ODBC管理器(Administrator)。该程序位于Windows95控制面板(ControlPanel)的32位ODBC内,其主要任务是管理安装的ODBC驱动程序和管理数据源。驱动程序管理器(DriverManager)。驱动程序管理器包含在ODBC32.DLL中,对用户是透明的。其任务是管理ODBC驱动程序,是ODBC中最重要的部件。ODBCAPI。ODBC驱动程序。是一些DLL,提供了ODBC和数据库之间的接口。数据源。数据源包含了数据库位置和数据库类型等信息,实际上是一种数据连接的抽象。各部件之间的关系如图下图所示:应用程序要访问一个数据库,首先必须用ODBC管理器注册一个数据源,管理器根据数据源提供的数据库位置、数据库类型及ODBC驱动程序等信息,建立起ODBC与具体数据库的联系。这样,只要应用程序将数据源名提供给ODBC,ODBC就能建立起与相应数据库的连接。在ODBC中,ODBCAPI不能直接访问数据库,必须通过驱动程序管理器与数据库交换信息。驱动程序管理器负责将应用程序对ODBCAPI的调用传递给正确的驱动程序,而驱动程序在执行完相应的操作后,将结果通过驱动程序管理器返回给应用程序。在访问ODBC数据源时需要ODBC驱动程序的支持。用VisualC++5.0安装程序可以安装SQLServer、Access、Paradox、dBase、FoxPro、Excel、Oracle和MicrosoftText等驱动程序.在缺省情况下,VC5.0只会安装SQLServer、Access、FoxPro和dBase的驱动程序.如果用户需要安装别的驱动程序,则需要重新运行VC5.0的安装程序并选择所需的驱动程序。??ODBC使用层次的方法来管理数据库,在数据库通信结构的每一层,对可能出现依赖数据库产品自身特性的地方,ODBC都引入一个公共接口以解决潜在的不一致性,从而很好地解决了基于数据库系统应用程序的相对独立性,这也是ODBC一经推出就获得巨大成功的重要原因之一。从结构上分,ODBC分为单束式和多束式两类。1.单束式驱动程序单束式驱动程序介于应用程序和数据库之间,像中介驱动程序一样数据提供一个统一的数据访问方式。当用户进行数据库操作时,应用程序传递一个ODBC函数调用给ODBC驱动程序管理器,由ODBCAPI判断该调用是由它直接处理并将结果返回还是送交驱动程序执行并将结果返回。由上可见,单束式驱动程序本身是一个数据库引擎,由它直接可完成对数据库的操作,尽管该数据库可能位于网络的任何地方。2.多束式驱动程序多束式驱动程序负责在数据库引擎和客户应用程序之间传送命令和数据,它本身并不执行数据处理操作而用于远程操作的网络通信协议的一个界面。前端应用程序提出对数据库处理的请求,该请求转给ODBC驱动程序管理器,驱动程序管理器依据请求的情况,就地完成或传给多束驱动程序,多束式驱动程序将请求翻译为特定厂家的数据库通信接口(如Oracle的SQLNet)所能理解的形式并交于接口去处理,接口把请求经网络传送给服务器上的数据引擎,服务器处理完后把结果发回给数据库通信接口,数据库接口将结果传给多束式ODBC驱动程序,再由驱动程序将结果传给应用程序。所谓MIS(管理信息系统——ManagementInformationSystem)系统,是一个由人、计算机及其他外围设备等组成的能进行信息的收集、传递、存贮、加工、维护和使用的系统。它是一门新兴的科学,其主要任务是最大限度的利用现代计算机及网络通讯技术加强企业的信息管理,通过对企业拥有的人力、物力、财力、设备、技术等资源的调查了解,建立正确的数据,加工处理并编制成各种信息资料及时提供给管理人员,以便进行正确的决策,不断提高企业的管理水平和经济效益。目前,企业的计算机网络已成为企业进行技术改造及提高企业管理水平的重要手段。随着我国与世界信息高速公路的接轨,企业通过计算机网络获得信息必将为企业带来巨大的经济效益和社会效益,企业的办公及管理都将朝着高效、快速、无纸化的方向发展。MIS系统通常用于系统决策,例如,可以利用MIS系统找出目前迫切需要解决的问题,并将信息及时反馈给上层管理人员,使他们了解当前工作发展的进展或不足。换句话说,MIS系统的最终目的是使管理人员及时了解公司现状,把握将来的发展路径。??一个完整的MIS应包括:辅助决策系统(DSS)、工业控制系统(IPC)、办公自动化系统(OA)以及数据库、模型库、方法库、知识库和与上级机关及外界交换信息的接口。其中,特别是办公自动化系统(OA)、与上级机关及外界交换信息等都离不开Intranet的应用。可以这样说,现代企业MIS不能没有Intranet,但Intranet的建立又必须依赖于MIS的体系结构和软硬件环境。??传统的MIS系统的核心是CS(Client/Server——客户端/服务器)架构,而基于Internet的MIS系统的核心是BS(Browser/Server——浏览器/服务器)架构。BS架构比起CS架构有着很大的优越性,传统的MIS系统依赖于专门的操作环境,这意味着操作者的活动空间受到极大限制;而BS架构则不需要专门的操作环境,在任何地方,只要能上网,就能够操作MIS系统,这其中的优劣差别是不言而喻的。基于Internet上的MIS系统是对传统MIS系统概念上的扩展,它不仅可以用于高层决策,而且可以用于进行普通的商务管理。通过用户的具名登录(或匿名登录),以及相应的权限控制,可以实现在远端对系统的浏览、查询、控制和审阅。随着Internet的扩展,现有的公司和学校不再局限于物理的有形的真实的地域,网络本身成为事实上发展的空间。基于Internet上的MIS系统,弥补了传统MIS系统的不足,充分体现了现代网络时代的特点。随着Internet技术的高速发展,因特网必将成为人类新社会的技术基石。基于Internet的MIS系统必将成为网络时代的新一代管理信息系统,前景极为乐观。??市场营销的MIS(ManagementInformationSystem)是企业或组织整体MIS的一部分。MIS是一个信息系统,它通过程式化的程序从各种相关的资源(公司外部和内部的都包括)收集相应的信息,为经理们提供各层次的功能,以使得他们能够对自己所应该负责的各种计划、监测和控制活动等做出及时、有效的决策。这个表明MIS的本质是一个关于内部和外部信息的数据库,这个数据库可以帮助经理们做分析、决策、计划和设定控制目标。因此重点是如何使用这些信息,而不是如何形成这些信息。??最有效的MIS能够反应随着时间的推移和内部程序的改变,外部的变量如何改变,也就是说,时间和内部变量是否会对外部的变量产生影响。这就建立了一个强大而且有效的知识库,它可以帮助进行预测。虽然建立和维MIS是非常耗时和昂贵的,但是与其带来的潜在利益和对决策准确性的提高相比,对一个组织来说这还是值得的。Internet为建立和维护MIS提供了一个理想的工具,而MIS也是网络营销中的一个重要的内容。MapBasic?是理想的在MapInfo平台上开发用户定制的应用程序的编程语言。通过使用MapBasic进行二次开发,能够扩展MapInfo功能,实现程序的自动重复操作并使MapInfo与其他应用软件集成。MapBasic功能强大,用户仅用几行代码即可在应用软件中实现图层叠加,并具备其他地理功能。MapBasic程序易于与用诸如Visual?、C++、PowerBuilder和Delphi等语言编写的应用软件集成。MapBasic已经被世界上数百个第三方厂商认可。EPANET是美国环境保护总署国家风险管理研究所开发的软件,主要用于有压管网系统(包括水库、pump、tank等)水力计算和水质分析。所谓拓扑学(TOPOLOGY)是一种研究与大小、距离无关的几何图形特性的方法。网络拓扑是由网络节点设备和通信介质构成的网络结构图。在选择拓扑结构时,主要考虑的因素有:安装的相对难易程度、重新配置的难易程度、维护的相对难易程度、通信介质发生故障时,受到影响的设备的情况.一基本术语1.节点节点就是网络单元。网络单元是网络系统中的各种数据处理设备、数据通信控制设备和数据终端设备。节点分为:转节点,它的作用是支持网络的连接,它通过通信线路转接和传递信息;访问节点,它是信息交换的源点和目标。2.链路链路是两个节点间的连线。链路分“物理链路”和“逻辑链路”两种,前者是指实际存在的通信连线,后者是指在逻辑上起作用的网络通路。链路容量是指每个链路在单位时间内可接纳的最大信息量。3.通路??通路是从发出信息的节点到接收信息的节点之间的一串节点和链路。也就是说,它是一系列穿越通信网络而建立起的节点到节点的链路二常见的网络拓扑结构1.星型结构星型结构的优点是结构简单、建网容易、控制相对简单。其缺点是属集中控制,主节点负载过重,可靠性低,通信线路利用率低。????一个星型拓扑可以隐在另一个星型拓扑里而形成一个树型或层次型网络拓扑结构。????相对其他网络拓扑来说安装比较困难,比其他网络拓扑使用的电缆要多。容易进行重新配置,只需移去、增加或改变集线器某个端口的连接,就可进行网络重新配置。由于星型网络上的所有数据都要通过中心设备,并在中心设备汇集,星型拓扑维护起来比较容易。受故障影响的设备少,能够较好地处理。2.总线结构总线结构是比较普遍采用的一种方式,它将所有的入网计算机均接入到一条通信线上,为防止信号反射,一般在总线两端连有终结器匹配线路阻抗,总线结构的优点是信道利用率较高,结构简单,价格相对便宜。缺点是同一时刻只能有两个网络节点相互通信,网络延伸距离有限,网络容纳节点数有限。在总线上只要有一个点出现连接问题,会影响整个网络的正常运行。目前在局域网中多采用此种结构。总线拓扑网络通常把短电缆(分支电缆)用电缆接头连接到一条长电缆(主干)上去。总线拓扑网络通常是用T型BNC连接器将计算机直接连到同轴电缆主干上。主干两端连有终结器匹配线路阻抗。总线拓扑网络相对来说容易安装,只需敷设主干电缆,比其他拓扑结构使用的电缆要少。配置简单,很容易增加或删除节点,但当可接受的分支点达到极限时,就必须重新敷设主干电缆。相对来说比较维护困难,因为在排除介质故障时,要将错误隔离到某个网段。受故障影响的设备范围大。星型结构是以一个节点为中心的处理系统,各种类型的入网机器均与该中心节点有物理链路直接相连。3.环型结构环型结构是将各台连网的计算机用通信线路连接成一个闭合的环在环型结构的网络中,信息按固定方向流动,或顺时针方向,或逆时针方向。????环型结构的优点是一次通信信息在网中传输的最大传输延迟是固定的;每个网上节点只与其他两个节点有物理链路直接互连,因此,传输控制机制较为简单,实时性强。缺点是一个节点出现故障可能会终止全网运行,因此可靠性较差。为了克服可靠性差的问题,有的网络采用具有自愈功能乃结构,一旦一个节点不工作,自动切换到另一环路工作。此时,网络需对全网进行拓扑和访问控制机制的调整,因此较为复杂。????环型拓扑是一个点到点的环型结构。每台设备都直接连到环上,或通过一个接口设备和分支电缆连到环上。????在初始安装时,环型拓扑网络比较简单。随着网上节点的增加,重新配置的难度也增加,对环的最大长度和环上设备总数有限制。可以很容易地找到电缆的故障点。受故障影响的设备范围大,在单环系统上出现的任何错误,都会影响网上的所有设备。4.树型结构树型结构实际上是星型结构的一种变形,它将原来用单独链路直接连接的节点通过多级处理主机进行分级连接这种结构与星型结构相比降低了通信线路的成本,但增加了网络复杂性。网络中除最低层节点及其连线外,任一节点或连线的故障均影响其所在支路网络的正常工作。5.网状结构网状结构分为全连接网状和不完全连接网状两种形式。全连接网状中,每一个节点和网中其它节点均有链路连接。不完全连接网中,两节点之间不一定有直接链路连接,它们之间的通信,依靠其它节点转接。这种网络的优点是节点间路径多,碰撞和阻塞可大大减少,局部的故障不会影响整个网络的正常工作,可靠性高;网络扩充和主机入网比较灵活、简单。但这种网络关系复杂,建网不易,网络控制机制复杂。广域网中一般用不完全连接网状结构。6.蜂窝拓扑结构蜂窝拓扑结构是无线局域网中常用的结构。它以无线传输介质(微波、卫星、红外等)点到点和多点传输为特征,是一种无线网,适用于城市网、校园网、企业网。

18.8M供水专家管理软件

?8M供水专家管理软件是一套先进的计算机管理软件系统,它具以下强大的管理功能。供水GIS地理信息管理系统管网紧急事故处理系统与阀门历史变更管理管网漏水记录及分析系统管网平差与管网运行状态分析系统管网改扩建规划设计系统8M系统软件是一套成熟的专业供水软件实用性,突出满足供水管网管理的需要安全和可靠性,容错能力和处理突发事件的能力,系统和资料不会因为意外而有大的损失可操作性,操作直观简单,符合自来水公司的习惯,而且方便灵活规范性,符合中国供水企业供水管理的专业要求可扩充性,提供良好的接口便于资料的转换和共享,包括将来的联网,同时注意兼容性的问题GIS地理信息系统

地理信息系统是8M供水专家管理软件的重要组成部分之一。它包括对城市整个供水区域内的地下管线和地形地貌的图形与数据的管理。包括从图纸的输入、查询、信息汇总,到图纸原样输出的全部功能。8M地理信息系统是专门为供水系统服务的,魔恩公司在设计该系统时已充分考虑到供水系统的特点,它的地下供水管线的结构与表达方式与其它地理信息系统的区别是:可一次性输入供水管网图形、管网参数及管网中的用户。可完成管网图的自动拼接可识别每条管段及节点。可完成管段及节点的自动编号工作。可将图纸上的各类信息自动填入管网基础资料数据库中理信息系统是8M供水专家管理软件的数据基础。地理信息系统的建立过程,就是整个8M系统的主要建立过程,而其使用方便、功能完善的图纸输入系统使得8M供水专家管理软件的建立工作变得十分简单。WWW是WorldWideWeb(环球信息网)的缩写,也可以简称为Web,中文名字为“万维网”。它起源于1989年3月,由欧洲量子物理实验室CERN(theEuropeanLaboratoryforParticlePhysics)所发展出来的主从结构分布式超媒体系统。通过万维网,人们只要通过使用简单的方法,就可以很迅速方便地取得丰富的信息资料。由于用户在通过Web浏览器访问信息资源的过程中,无需再关心一些技术性的细节,而且界面非常友好,因而Web在Internet上一推出就受到了热烈的欢迎,走红全球,并迅速得到了爆炸性的发展。先来看看两个名词:超文本(hypertext)一种全局性的信息结构,它将文档中的不同部分通过关键字建立链接,使信息得以用交互方式搜索。它是超级文本的简称。超媒体(hypermedia)超媒体是超文本(hypertext)和多媒体在信息浏览环境下的结合。它是超级媒体的简称。用户不仅能从一个文本跳到另一个文本,而且可以激活一段声音,显示一个图形,甚至可以播放一段动画。Internet采用超文本和超媒体的信息组织方式,将信息的链接扩展到整个Internet上。Web就是一种超文本信息系统,Web的一个主要的概念就是超文本连接,它使得文本不再象一本书一样是固定的线性的。而是可以从一个位置跳到另外的位置。你可以从中获取更多的信息。可以转到别的主题上。想要了解某一个主题的内容只要在这个主题上点一下,就可以跳转到包含这一主题的文档上。正是这种多连接性我们才把它称为Web。Web的特点:一Web是图形化的和易于导航的(navigate)Web非常流行的一个很重要的原因就在于它可以在一页上同时显示色彩丰富的图形和文本的性能。在Web之前Internet上的信息只有文本形式。Web可以提供将图形、音频、视频信息集合于一体的特性。同时,Web是非常易于导航的,只需要从一个连接跳到另一个连接,就可以在各页各站点之间进行浏览了。二Web与平台无关无论你的系统平台是什么,你都可以通过Internet访问WWW。浏览WWW对你的系统平台没有什么限制。无论从Windows平台、UNIX平台、Macintosh还是别的什么平台我们都可以访问WWW。对WWW的访问是通过一种叫做浏览器(browser)的软件实现的。如Netscape的Navigator、NCSA的Mosaic、Microsoft的Explorer等。三Web是分布式的大量的图形、音频和视频信息会占用相当大的磁盘空间,我们甚至无法预知信息的多少。对于Web没有必要把所有信息都放在一起,信息可以放在不同的站点上。只需要在浏览器中指明这个站点就可以了。使在物理上并不一定在一个站点的信息在逻辑上一体化,从用户来看这些信息是一体的。Web是动态的最后,由于各Web站点的信息包含站点本身的信息,信息的提供者可以经常对站上的信息进行更新。如某个协议的发展状况,公司的广告等等。一般各信息站点都尽量保证信息的时间性。所以Web站点上的信息是动态的。经常更新的。这一点是由信息的提供者保证的。Web动态的特性还表现在Web是交互的。Web的交互性首先表现在它的超连接上,用户的浏览顺序和所到站点完全由他自己决定。另外通过FORM的形式可以从服务器方获得动态的信息。用户通过填写FORM可以向服务器提交请求,服务器可以根据用户的请求返回相应信息。WWW是WorldWideWeb的缩写,可译为“环球网”或“万维网”,它是基于Internet提供的一种界面友好的信息服务,用于检索和阅读连接到Internet上服务器的有关内容。该服务利用超文本(Hypertext)、超媒体(Hypermedia)等技术,允许用户通过浏览器(如微软的IE、网景的Netscape)检索远地计算机上的文本、图形、声音以及视频文件。“电平”就是指电路中两点或几点在相同阻抗下电量的相对比值。这里的电量自然指“电功率”、“电压”、“电流”并将倍数化为对数,用“分贝”表示,记作“dB”。分别记作:10lg(P2/P1)、20lg(U2/U1)、20lg(I2/I1)上式中P、U、I分别是电功率、电压、电流。使用“dB”有两个好处:其一读写、计算方便。如多级放大器的总放大倍数为各级放大倍数相乘,用分贝则可改用相加。其二能如实地反映人对声音的感觉。实践证明,声音的分贝数增加或减少一倍,人耳听觉响度也提高或降低一倍。即人耳听觉与声音功率分贝数成正比。例如蚊子叫声与大炮响声相差100万倍,但人的感觉仅有60倍的差异,而100万倍恰是60dB。逻辑电平的一些概念要了解逻辑电平的内容,首先要知道以下几个概念的含义:1)输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。2)输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。3)输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。4)输出低电平(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。5)阀值电平(Vt):数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。它是一个界于Vil、Vih之间的电压值,对于CMOS电路的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输出,则必须要求输入高电平>Vih,输入低电平Vih>Vt>Vil>Vol。6)Ioh:逻辑门输出为高电平时的负载电流(为拉电流)。7)Iol:逻辑门输出为低电平时的负载电流(为灌电流)。8)Iih:逻辑门输入为高电平时的电流(为灌电流)。9)Iil:逻辑门输入为低电平时的电流(为拉电流)。门电路输出极在集成单元内不接负载电阻而直接引出作为输出端,这种形式的门称为开路门。开路的TTL、CMOS、ECL门分别称为集电极开路(OC)、漏极开路(OD)、发射极开路(OE),使用时应审查是否接上拉电阻(OC、OD门)或下拉电阻(OE门),以及电阻阻值是否合适。对于集电极开路(OC)门,其上拉电阻阻值RL应满足下面条件:(1):RL<(VCC-Voh)/(nIoh+mIih)(2):RL>(VCC-Vol)/(Iol+mIil)其中n:线与的开路门数;m:被驱动的输入端数。:常用的逻辑电平·逻辑电平:有TTL、CMOS、LVTTL、ECL、PECL、GTL;RS232、RS422、LVDS等。·其中TTL和CMOS的逻辑电平按典型电压可分为四类:5V系列(5VTTL和5VCMOS)、3.3V系列,2.5V系列和1.8V系列。·5VTTL和5VCMOS逻辑电平是通用的逻辑电平。·3.3V及以下的逻辑电平被称为低电压逻辑电平,常用的为LVTTL电平。·低电压的逻辑电平还有2.5V和1.8V两种。·ECL/PECL和LVDS是差分输入输出。·RS-422/485和RS-232是串口的接口标准,RS-422/485是差分输入输出,RS-232是单端输入输出。CAM

CAM有三个常见解释:1)CAM(computerAidedManufacturing,计算机辅助制造):利用计算机来进行生产设备管理控制和操作的过程。它输入信息是零件的工艺路线和工序内容,输出信息是刀具加工时的运动轨迹(刀位文件)和数控程序。2)补充和另类医学,complementaryandalternativemedicine。亦指内容可寻址存储器(Content??Addressable??Memory)。3)电影用于:CAM(枪版)??CAM通常是用数码摄像机从电影院盗录。有时会使用小三角架,但大多数时候不可能使用,所以摄像机会抖动。因此我们看到画面通常偏暗人物常常会失真,下方的字幕时常会出现倾斜。由于声音是从摄像机自带的话筒录制,所以经常会录到观众的笑声等声音。因为这些因素,图象和声音质量通常都很差。CAD

CAD即计算机辅助设计(ComputerAidedDesign,CAD),其概念和内涵正在不断地发展中。1972年10月,国际信息处理联合会(IFIP)在荷兰召开的“关于CAD原理的工作会议”上给出如下定义:CAD是一种技术,其中人与计算机结合为一个问题求解组,紧密配合,发挥各自所长,从而使其工作优于每一方,并为应用多学科方法的综合性协作提供了可能。CAD是工程技术人员以计算机为工具,对产品和工程进行设计、绘图、造型、分析和编写技术文档等设计活动的总称。根据模型的不同,CAD系统一般分为二维CAD和三维CAD系统。二维CAD系统一般将产品和工程设计图纸看成是“点、线、圆、弧、文本……”等几何元素的集合,系统内表达的任何设计都变成了几何图形,所依赖的数学模型是几何模型,系统记录了这些图素的几何特征。二维CAD系统一般由图形的输入与编辑、硬件接口、数据接口和二次开发工具等几部分组成。CAD是Autodesk公司的产品三维CAD系统的核心是产品的三维模型。三维模型是在计算机中将产品的实际形状表示成为三维的模型,模型中包括了产品几何结构的有关点、线、面、体的各种信息。计算机三维模型的描述经历了从线框模型、表面模型到实体模型的发展,所表达的几何体信息越来越完整和准确,能解决“设计”的范围越广。其中,线框模型只是用几何体的棱线表示几何体的外形,就如同用线架搭出的形状一样,模型中没有表面、体积等信息。表面模型是利用几何形状的外表面构造模型,就如同在线框模型上蒙了一层外皮,使几何形状具有了一定的轮廓,可以产生诸如阴影、消隐等效果,但模型中缺乏几何形状体积的概念,如同一个几何体的空壳。几何模型发展到实体模型阶段,封闭的几何表面构成了一定的体积,形成了几何形状的体的概念,如同在几何体的中间填充了一定的物质,使之具有了如重量、密度等特性,且可以检查两个几何体的碰撞和干涉等。由于三维CAD系统的模型包含了更多的实际结构特征,使用户在采用三维CAD造型工具进行产品结构设计时,更能反映实际产品的构造或加工制造过程。目前,三维CAD系统已经成为企业进行产品创新设计的主流工具。三维CAD系统已经从早期的实体造型,发展到特征造型和基于约束的造型。CAD系统广泛应用于机械、电子、汽车、航空航天、模具、仪表、轻工等制造行业。三维CAD系统在产品的零件造型、装配造型和焊接设计、模具设计、电极设计、钣金设计等方面提供了强大的功能,真实感显示、曲面造型的功能也已经很强大。目前,高端的三维CAD系统主要包括UGNX、CATIA、PRO-E。中端主流的三维CAD系统主要包括SolidWorks、SolidEdge、Inventor。国产的三维CAD系统有Solid3000和CAXA实体工程师。而我国流行的二维CAD系统主要包括AutoCAD、CAXA、中望、浩辰等。基于三维CAD系统,已经有很多CAE/CAM系统,支撑产品的设计/仿真和制造。??其他解释:CAD,加拿大元(CanadianDollar)的代码。即由计算机帮助工程设计人员进行设计,主要服务于机械、电子、宇航、建筑、纺织、化工等产品的总体设计、造型设计、结构设计、工艺过程设计等环节。一个完善的CAD系统,应包括交互式图形程序库、工程数据库和应用程序库。借助CAD技术对产品或工程的设计,可以大大缩短设计周期,提高设计效率,节省人力物力逻辑1)什么是逻辑???逻辑成为一门科学,那是从亚里士多德开始的,这恐怕怀疑的人很少。我们知道亚氏并没有把他的研究叫做“逻辑”,但他明确指出他的研究对象是“三段论”,而这是关于从一个真的前提“必然地”推出一些结论的科学。他的三段论有两种,一是蕴涵三段论,二是归纳三段论。前者我们不必说,后者实际上是一种完全归纳,因而也是演绎性的。因此,亚里士多德意义上的“逻辑”,就是关于“必然推理规则”,或“必然证明或论证规则”的科学。他尽管提到过简单枚举归纳,但并不是从“逻辑”意义上来说的,只是为了和“逻辑”进行对比而从论辩的意义上而言的。??从词源来说:赫拉克利特最早使用logos也是指语言中体现的“客观次序”,也是在“必然”意义上讲的。因此,“逻辑”的本义不仅仅是指“推理规则”,而且是指“必然推理规则”。逻辑学和其它学科分科的意义,实际上就在这里。如同当今中国许多人指责经济学没有研究“生产力”一样,硬要逻辑学去研究它的内容是否为真,本来就不合分科的原理。如果逻辑学什么都可以研究,就应该叫“知识学”。(2)什么是归纳逻辑???培根提出科学的“归纳法”的时候,并没有说这就是逻辑;而是到了穆勒才把“归纳法”写进了他的《逻辑体系》中。但是,他不是在“必然推理”的角度来使用“逻辑”概念的,他的逻辑是指建立在一套“程序化规则”的“推理”,至于使用这个规则是否得出必然的结论,那是无关紧要的。他认为,凡是推理都有权叫逻辑。可见,就是穆勒自己也认为,根据本来的逻辑定义,研究归纳其实不能算逻辑学。??值得注意的是许多现代归纳逻辑的大家,如卡尔纳普等根本不认为培根、穆勒的“归纳法”是什么“逻辑”而只认为它是一种“方法”,也不认为现代归纳逻辑起源于他们两个,而是起源于概率论;而最先研究的概率的目的,根本不是为了反对什么“唯理主义”,而是为了解决赌博的问题。概率论创始人帕斯卡本人就是唯理主义者。??但是,现代归纳逻辑之所以叫逻辑,也不是因为它已经变成了一门关于“必然性规则”的科学,而是因为它本身已经“演绎化”。但是,这并不能改变归纳逻辑是关于“概然性”的学科。它和“逻辑”学要研究的领域根本不同。一个“演绎化”的体系能否就是“逻辑学”?现代的一些科学,如博弈论内部也是演绎化的,能够因此就叫做“逻辑学”吗???(3)什么是辩证逻辑???我们说,现代逻辑一般是把“归纳法”和“归纳逻辑”严格区分。同样,辩证法和辩证逻辑也不一样。在黑格尔之前的应该叫辩证方法(而不是姚大志说的是什么逻辑),而在黑格尔这里的确是要用“辩证法这种思维方式”,来建立“新的逻辑学”。因此,他所谓的辩证法就是指辩证逻辑。他的思路主要有两个:一、解决逻辑学的基础问题,即是用逻辑学来自己证明自己的前提为真(注意,绝不是从外面引一个什么“归纳法”来证明自己的前提为真),这就是一个圆圈式思维方式,而以前的逻辑则是直线性思维方式,所以无法具有反身性。二、使得逻辑学不是建立在同一律,而是建立在对立统一律上。我们知道,在黑格尔时代,所谓“形式逻辑”的同一律这个根本前提本身是没有经过证明的规律,所以形式逻辑作为关于“必然性规则”的科学本身就是不必然的。如果把逻辑学建立在对立统一律上,就可以说明同一律的根据,从而使逻辑学的各规则之间的相互推演真正具有“完全性”和“必然性”。就黑格尔说的这点而言,他试图创立的辩证逻辑的确可以说是比传统形式逻辑更高级。??至于黑格尔这种思路是否就真能建立起了他的辩证逻辑,这个可以怀疑、探讨和研究。但是可以肯定,这里的逻辑含义也是从必然性来说的。黑格尔说:“辩证法...是在科学内容里由以达到内在联系和必然性的唯一原则。”他就是要阐述这一“达到内在联系和必然性的唯一原则”。??因此,这里提醒一下其他参与讨论的朋友,就是“辩证逻辑”和“形式逻辑”的区别不是在所谓“内容”和“形式”的区别。而是我们上面说的内容。所谓“形式逻辑”指的指逻辑学只研究逻辑常项,这点辩证逻辑也一样。作为一门科学不可能去研究那些变动无常、不可把握的东西。黑格尔说:“内容不如说是在自身那里就有着形式,甚至可以说惟有通过形式,它才有生气和实质;而且,那仅仅转化为一个内容显现的,就是形式本身。”因此,辩证逻辑也只研究“辩证逻辑常项”,即逻辑的形式。??说黑格尔的辩证逻辑是要研究具体内容的,那是从罗素开始的无稽之谈。(4)辩证逻辑和归纳的关系??辩证逻辑也是关于必然性规则的科学,因而和培根、穆勒的所谓归纳法没有什么关系。归纳和演绎(逻辑)各有相互不可替代的作用。归纳主要用于搜索发现,逻辑用于证成;归纳研究在不充分条件下的可能过程,逻辑研究充分条件下的必然过程。因此,辩证逻辑恐怕很难建立在“归纳1...演绎1...归纳2...演绎2...”的基础上。硬要找一个公式,不如说是:分析...综合....。这里的分析和综合都是逻辑学意义上(如亚里士多德把他的三段论就叫作分析),而不是方法意义上的。方法意义上的这个公式其实在柏拉图的辩证法里面就已经有了。(5)制约逻辑--传统逻辑与现代逻辑的有机结合(当代逻辑的新领域--制约逻辑)?二千三百年前,古希腊的伟大思想家亚里士多德(Aristotelés前384—前322年)以《工具论》创立了传统形式逻辑,为逻辑发展史树起了第一座丰碑。从19世纪中叶到20世纪初,经过英国数学家布尔、德国数学家弗雷格、英国哲学家、数学家罗索等人接连不断的努力,吸收莱布尼兹的成果,建立了后来作为电子计算机理论基础的“正统数理逻辑”的现代公理系统,这是逻辑学发展史上的第二座里程碑。1968年,中国形式逻辑研究会理事、北京开关厂工程师林邦谨创立了一门新的逻辑学说——制约逻辑,向前两座丰碑提出了挑战。1978年,在我国逻辑学界元老沈有鼎教授的举荐下,经华裔美籍逻辑学家王浩教授推荐,林邦谨在美国数学会刊物《文摘》上发表论文《制约逻辑简介》。1985年12月,林邦谨的专著《制约逻辑》在国内正式出版。制约逻辑独树一帜,震动了逻辑学界,引起了国内外学者的关注。制约逻辑是传统的形式逻辑与正统数理逻辑(现代逻辑)有机结合的产物,它运用现代逻辑提供的严格精密的数学方法,去构造一个能确切地体现传统形式逻辑的深刻正确的主导思想的非正统的逻辑制约系统。林邦谨认为,传统形式逻辑密切结合人类普通思维和自然语言实际,把从已知进入未知的推理格式作为自己的主要研究对象,坚持贯彻不许循环论证,这是它的深刻而正确的主导思想。但它对十些极简单的推理却不能从理论上加;以分析,演算技术也十分简陋、陈旧,远不能满足现代的需要。正统数理逻辑系统地采用了现代数学方法,论证严谨,演算精密,但它却舍弃了推理格式中起决定作用的非数学的逻辑含义这一精髓,将其处理成真值函数、个体—真值函数关系,因而远离了传统形式逻辑的主导思想。林邦谨木胆地综合融汇了上述两种逻辑的优点而摈弃二者之缺陷,创造出自外于传统两家的新逻辑体系——制约逻辑学说,即继承形式逻辑的正确主导思想和有效的推理格式,并采用数理逻辑所提供的数学方法来处理科学研究和社会生活中的各种逻辑问题。它是久盛不衰的传统形式逻辑的现代发展。制约逻辑学说指出,制约关系就是刻划清楚后的充分条件关系。制约关系事实上构成了传统形式逻辑中可据以进行不循环论证的推理格式的理论核心:推理式的前后件之间必定满足普遍有效的制约关系,而在前件或后件中也必定出现制约关系。制约逻辑体系由语义学、语构学、语用学三者组成。制约逻辑语义学研究客观世界的逻辑结构和逻辑规律,而以其中的客观的制约关系和有关制约关系的客观的逻辑规律为主要研究对象。制约逻辑语构学研究刻划客观的逻辑结构和规律的表意的人工符号的机械的排列结构和变形规则。制约逻辑语用学研究在指谓同一的原则下符号语言与自然语言的互相翻译。总的说来,制约逻辑所研究的领域是:观实世界对象域上的个体、集、一元或多元函数、一元:或多元关系、关系间的直值函数关系、关系间的充分条件(即制约)关系,和上述种种关系的客观规律,以及它们在意识中的反映——概念(词)、命题和推理。其中,制约(充分条件)关系为研究核心。林邦谨在深入分析人类普通的逻辑思维实际的基础上,运用数理逻辑的演算技巧,提出了命题演算Cm系统和名词演算Cn系统。Cm中的“制约”命题夕p→q跟p和q的真假共有七种,p→q也获得三真四假的纪录。这,点与莱维斯(Lewis)的严格蕴涵一致。但Cm跟莱维斯的模态系统是有区别的。Cm系统有以下主要特征:(1)在Cm中,所谓“必然”,并非某二命题的性质,而只能是两个命题间的联系。p→q表示p和q之间有某种"必然"联系。(2)除了为一般模态系统所避免的象p→(q→p)等著各的蕴涵怪论以外,Cm还避免了象Tp→q这一类最难避免因而为一般模态系统所容纳的蕴涵怪论。(3)跟一般模态系统不同,Cn有象[p→(q→r)]→[q→(p→r)]这一类公式。(4)相当于在一般形式逻辑书中列出的传统命题逻辑推理式的定理它都具有。(5)没有象T(pVq)—>q这一类公式。(6)凡是在传统形式逻辑中看起来好像是用了相当于被Cm排除了的二值系统中的定理的地方,Cm都有很好的处理方法。在Cm系统的基础之上建立的Cn系统,只是扩充形式语言(引八个体变元、函数词和谓词),而不用量词。这样不仅在技巧上可避免拿有量词的形式系统所不可避免的许多麻烦,使演算的进程原则上是命题演算,而且更接近于普通逻辑思维实际。同时,Cn系统将对解决判定问题提供明朗的前景。林邦谨在演绎推理问题上提出了两个独立性,具有逻辑性质“可独立于前后件的真假确定不会是前真而后假”的制约式定理称为第一独立性。具有逻辑性质“可在无需确定后件为真的情况下确定前件为真”的推理式定理称为第二独立性。“两个独立性”是为在论证中出现的推理式所必具的确保论证不循环的逻辑精髓。这是深刻的逻辑理论观点。国内外一些专家学者认为制约逻辑在学术和科学实践等方面有重大的意义:(1)它可以分析、处理一系列逻辑史上迄今争论不休、久悬末决的难题。对命题的真假对错、主词存在、宾词周延和演绎推理能否推出新知,已证明的结论是否已证实,以及在数学史上引起第三次数学危机的悖论等问题,都可能给出确定的解决。(2)以它为逻辑基础建立的初等数论的形式系统N,当Cn。的判定问题一经解决,就可能为最终解决哥德巴赫猜想提供新的思路。这种数论系统还可能满足相容性和完全性(与哥德尔不完全定理正好相反).(3)制约逻辑形式化公理系统,为计算机语言创造了符号语言体系。以它作为计算机科学的逻辑理论基础,可为研究、设计新兰代的内涵智能机;软件可靠性确认、程序正确性证明等方面提供新的途径。(4)以它来分析科学理论和科学创造中的逻辑机制,可使科学工作者掌握有效而实用的科学方法。国际逻辑学界和计算机学界对制约逻辑理论非常敏感。当林邦谨的简短论文《制约逻辑简介》在美国刚发表不久,联邦德国和加拿大的大学就积极组织专家研究班进行翻译和讨论,他们认为林邦谨“构造的这种逻辑体系是重要的,因为这种逻辑与计算机,科学,特别是‘判定程序''关系密切”。美国数学会秘书长利弗库博士推荐《制约逻辑》英文摘要给下届国。际逻辑讨论会。第八届。国际逻辑讨论会第一副主席、奥地利兰兹堡大学教授瓦因加特纳博士正式邀请林邦谨参加1987年在莫斯科举行的国际逻辑学术会议,并将作专题发言。在国内,林邦谨的制约逻辑现已引起学术界注意,国家科委于1986年在清华大学组织了高层次研讨班对制约逻辑进行剖析、探讨。对《制约逻辑》的批评也是较尖锐、激烈的(郭世铭、董亦农:评《制约逻辑》中的几个形式系统,《自然辩证法通讯》1987,No.3)。他们认为制约逻辑的Cm系统与二十几年前国外发表的相干逻辑的命题演算R系统形式等价,而R是不可判定的,那么Cn系统亦就是不可判定的(林邦谨认为Cm和Cn是可判定的)。即使假若Cn可判定,Cn的判定方法用到数论系统上去也无济于事,因为一阶数论是不能有穷公理化的,因此要想在Cn基础上构造一个满足完全性的初等数论的形式系统N来解决哥德巴赫猜想等问题,是完全不可能的。Cm没有语义学,更无语义可靠性和完全性。Cn无法定义“必然”、“可能”这类概念。Cn没有实用价值,不可能证明任何一个有意义的必然命题和可能命题。N系统既不一致,也无足够的表达能力,当然也不可能完全,而且没有可判的公理集。N系统无法定义“整数”、“素数”、“减”之类的基本数论概念,无法表示象歌德巴赫猜想这类的命题。因此,N系统是一个罕见的百病缠身的系统。那么,制约逻辑何处为真理,何处是谬误;对它的学术性地位将怎样做成历史性的评价;究竟会有多大作为;是不是逻辑学上的一次革命;它能否经受得住社会实践的考验;相信时间终将会给予我们确切的答案。





























1

















献花(0)
+1
(本文系mgxbyhzhch首藏)