分享

物理学的分类

 小袤 2012-03-18

物理学的分类

 

物理学分类1:根据物理学科发展进程

 

经典物理学classical physics):19世纪末以经典电磁理论的建立为标志,经典物理学的发展达到顶峰,经典物理学几乎可以解释一切当时已知的物理问题。即使是在现在,我们遇到的大部分物理问题也都还可以用经典物理学解决,特别是化学生物学等领域内,存在着大量的经典近似

现代物理学 (modern physics):现代物理学通常是指20世纪

初开始发展起来的物理学,包括相对论量子力学原子和核物理学

粒子物理学等。现代物理学的出现源于当时新的实验事实的出现,最

重要的要数迈克耳逊—莫雷试验黑体辐射实验,物理学产生空前危

机。以太被否定,原子模型建立,光速不变原理提出,量子力学建立

等,标志着现代物理学的建立。今天计算机,激光,半导体等现代科

技的产生概源于现代物理学。

物理学分类2:根据研究的物质运动形态和具体研究对象

 

力学(Mechanics):研究物体机械运动的基本规律及关于时空相对性的规律;

热学(Thermodynamics):研究物质热运动的统计规律及其宏观表现;

电磁学(Electromagnetics):研究电磁现象,物质的电磁运动规律及电磁辐射等规律;

光学(optics):研究光的本性、光的传播和光与物质相互作用的基础学科;

原子物理学(atomic physics):研究原子的组成、排布及其运动、转化规律的科学。

 

物理学分类3:根据研究方法的侧重点

 

理论物理学计算物理学):通过为现实世界建立数学模来试图理解所有物理现象的运行机制。通过“物理理论”来条理化、解释、预言物理现象。丰富的想像力、精湛的数学造诣、严谨的治学态度,这些都是成为理论物理学家需要培养的优良素质。

实验物理学技术物理学):物理学是实验科学,凡物理学的概念、规律及公式等都是以客观实验为基础的。因此物理学绝不能脱离物理实验结果的验证,实验是物理学的基础。实验是有目的地去尝试,是对自然的积极探索。科学家提出某些假设和预见,为对其进行证明,筹划适当的手段和方法,根据由此产生的现象来判断假设和预见的真伪。因此科学实验的重要性是不言而喻的,其中物理实验自然也雄居要位。

物理学分类4:物理学分支细化所衍生的现代新兴学科

现代物理分类4.0原子、分子、光波物理学

原子物理学、分子物理学、光波物理学,都是在研究尺寸为单原子或少数原子结构的物质,及其与别的物质之间或与光波之间的相互作用。这三个研究领域合并在一起加以讨论,是因为它们之间有密切关系,都使用类似的方法,所涉及的能量尺寸也很相近。

2.1原子物理学专门研究原子的结构和性质,即环绕着原子核、束缚于原子内部的电子的排列,这排列所产生的现象与效应,以及促使这排列改变的过程。当今的研究焦点为,原子和离子陷俘trapping)于位势阱、低温碰撞动力学、在微弱相互作用气体(玻色-爱因斯坦凝聚态和稀释费米简并系统)里的原子的集体物理行为、基础常数的准确测量、电子关联对于结构与动态的效应。原子物理学与核子有关,例如超精细结构hyperfine structure);但是核内现象,像核裂变核聚变,皆属于高能物理学的范围。

2.2分子物理学专注于研究分子的物理性质以及将原子结合为分子的化学键性质。它和原子物理学紧密相关。分子物理学中最重要的实验方法是光谱分析。除了从原子得知的电子激发态以外,分子可以旋转与振动。由于这些旋转与振动具有量子性质,伴随的能级也是离散的。纯旋转运动光谱是在红外线谱域(波长大约为30-150微米);震动光谱是在近红外线谱域(大约为1-5微米);电子跃迁光谱是在可见光紫外线谱域。从测量旋转运动和振动光谱,可以获得分子的物理性质,例如,原子核与原子核之间的距离。原子物理学的原子轨域理论,在分子物理学里,扩展为分子轨域理论。

2.3光波物理学研究电磁辐射的生成与性质、电磁辐射与物质之间的微观相互作用,特别是其控制与操纵。从微波X射线,横跨整个电磁波谱,对于每一个频率,研究者尝试发展出具有更优良性质的发光源。研究者也会对于各种线性或非线性光学过程做详细分析。光波物理学的研究成果,时常会促成通讯业、制药业、制造业,甚至娱乐业的惊人进展。

现代物理学分类4.1粒子物理学

粒子物理学是研究组成物质射线基本粒子以及它们之间的相互作用的物理学的分支。由于许多基本粒子在大自然一般条件下不存在,或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能产生和研究它们,因此粒子物理学也被称为高能物理学

现代粒子物理学的研究集中在亚原子粒子上。这些粒子的结构比原子要小,其中包括原子的组成部分如电子质子中子(质子和中子本身又是由夸克所组成的粒子)和放射和散射所造成的粒子如光子中微子渺子,以及许多其它奇特的粒子。

在实验上把已经发现的粒子分为两大类。一类是不参与强相互作用的粒子,统称为轻子。另一类是参与强相互作用的粒子统称为强子。已经发现的数百种粒子中绝大部分是强子。

实验发现,强子也具有内部结构。强子内部带点电荷的东西在外国称为夸克,中国的部分物理学家称之为层子。因为他们认为:即使层子也不是物质的始元,也只不过是物质结构无穷层次中的一个层次而已。

虽然层子在强子内部可以相当自由地运动,但即使用目前加速器所能产生的能量最高的粒子束轰击强子,也没有能将层子打出来,使它们成为处于自由状态的层子。将层子囚禁在强子内部是强相互作用所独有的性质,这种性质称为囚禁

严格地说“粒子”这个称呼不精确,粒子物理学中研究的所有的物体都遵守量子力学的规则,它们都显示波粒二象性,根据不同的实验条件它们显示粒子的特性或的特性。在物理理论中,它们既非粒子也非波,理论学家用希尔伯特空间中的状态矢量来描写它们,参见量子场论。按照粒子物理学的常规,这些物体依然被称为“粒子”,虽然这些粒子也具有波的特性。

现代物理学分类4.2原子核物理学

原子核物理学nuclear physics)简称核物理学核子物理学,是研究原子核性质、结构和变化规律的物理学分支。它主要包括,研究各类次原子粒子与它们之间的关系、分类;分析原子核的性质和结构;研究原子核的获得射线束并将其用于探测、分析的技术,以及研究同核能、核技术应用有关的物理问题。

起源:1896年,A·H·贝可勒尔发现天然放射性,人类首次观测到核变化,通常将它作为核物理学的开端。此后的40多年,主要从事放射性衰变规律和射线性质的研究,并用射线对原子核作初步探讨;还创建了一系列探测方法和测量仪器,一些基本设备,诸如各种计数器、电离室等沿用至今。探测、记录射线并测定其性质,一直是核物理研究和核技术应用的一个中心环节。

原理:放射性衰变的研究证明了一种元素可以通过α衰变或β衰变而变成另一种元素,推翻了元素不可改变的观点;还确立了衰变规律的统计性。统计性是微观世界物质运动的一个根本性质,同经典力学和电磁学所研究的宏观世界物质运动有原则上的区别。衰变中发射的能量很大的射线,特别是α射线,为探索原子结构提供了前所未有的武器。1911年,E·卢瑟福等用α射线轰击各种原子,从射线偏折的分析确立了原子的核式结构,并提出原子结构的行星模型,为原子物理学奠定基础;同时还首次提出原子核这一术语,不久便初步弄清了原子的壳层结构和其电子的运动规律,建立和发展了阐明微观世界物质运动规律的量子力学。

现代物理学分类4.2.1:核物理学的发展与大发展

 

发展时期:1919年,卢瑟福等人发现用α射线轰击氮核时释放出质子,首次实现人工核反应。此后用射线引起核反应的方法逐渐成为研究原子核的主要手段。初期取得的重大成果是1932年中子的发现和1934人工放射性核素的制备。原子核是由中子和质子组成的。中子的发现不仅为核结构的研究提供必要的前提,还因为它不带电荷,不受核电荷的排斥,容易进入原子核而引起中子核反应,成为研究原子核的重要手段。30年代中,人们还从对宇宙线的观测发现正电子和介子”(后称μ),这些发现是粒子物理学的先河。

20世纪20年代后期,开始探讨加速带电粒子的原理。30年代初,静电、直线和回旋等类型的粒子加速器已具雏形,在高压倍加器上实现初步核反应。利用加速器可以获得束流更强、能量更高和种类更多的射线束,大大扩展了核反应的研究,使加速器逐渐成为研究原子核、应用核技术的必要设备。

在核物理的最初阶段已注意它的应用,特别是核射线治疗疾病例如肿瘤的作用。这是它当时受社会重视的重要原因。

大发展时期:1939年,O·哈恩和F·斯特拉斯曼发现核裂变,1942年,E.费米建立了第一个裂变反应堆,开创了人类掌握核能源的新世纪。核能几乎是取用不竭的能源,为了有效利用核能源、发展核武器,需要解决一系列很复杂的科学技术问题,而核物理和核技术是其中心环节。因此,核物理飞跃发展,成为竞争十分剧烈的科技领域。这一阶段持续30年左右,是核物理的大发展时期。在此期间,粒子的加速和探测技术有很大发展:30年代,最多只能把质子加速到1×106电子伏特(eV)的数量级;70年代,已达到4×1011eV,可产生能散度特小、准直度特高或流强特大的各种束流。在探测技术方面,半导体计数器的应用大大提高了测定射线能量的分辨率。核电子学和计算技术的飞速发展,从根本上改善了获取和处理实验数据的能力,也大大扩展了理论计算的范围。这一切有力地促进了核物理研究和核技术应用。对原子核的基本结构和变化规律也有更深入的认识,基本弄清了核子之间的相互作用的各种性质;对稳定核素和寿命较长的放射性核素的基态和低激发态(具核能级)的性质积累了较系统的实验数据;并通过理论分析,建立了各种适用的原子核模型,成功地解释了各种核现象和核反应。此外,还开展了高能核反应和重离子核反应的研究。

现代物理学分类4.2.2核反应与新原子的合成

 

通过核反应,人工合成了17种原子序数大于92的超铀元素和上千种新的放射性核素,表明元素仅仅是在一定条件下相对稳定的物质结构单位,并不是永恒不变的。天体物理的研究证明:核反应是天体演化中起关键作用的过程,核能是天体能量的主要来源。还初步了解到天体演化过程就是各种原子核的形成和演变的过程,诞生了新的边缘学科如宇宙化学。通过高能和超高能射线束与原子核的相互作用,发现了上百种短寿命的粒子,包括各种重子、介子、轻子和共振态粒子。庞大的粒子家族的出现,使物质世界的研究进入新阶段,建立了粒子物理学。这是物质结构研究的新前沿,再次证明了物质的不可穷尽性。各种高能射线束还提供了用其他方法不能获得的核结构知识。

 

现代物理学分类4.2.3核反应的短程的强相互作用和弱相互作用

通过对原子核的深入研究,发现在核的范围内除了宏观物体之间的长程的电磁相互作用、引力相互作用以外,还有短程的强相互作用和弱相互作用。在弱作用下宇称不守恒的发现,是对传统的物理学时空观的一次重大突破。研究这4种基本相互作用的规律和可能的联系,已成为粒子物理学和量子力学的重要课题,核物理还将在这方面做出新贡献。核物理还为核能装置的设计提供日益精确的数据,提高了核能利用的效率和经济指标,为更大规模的核能开发准备了条件。人工制备的各种同位素的应用,已遍及理工农医各部门。新的核技术如核磁共振、穆斯堡尔谱学等等,都迅速得到应用。核技术的广泛应用已成为科学技术现代化的标志之一。

现代物理学分类4.2.4核物理学和粒子物理学

 

粒子物理学建立后,在20世纪六十年代,核物理学和粒子物理学分道扬镖,核物理学已不再处于物质结构研究的最前沿。这是人类对自然界认识的一个重大失误,也是近代物理学的一个悲剧。原子核是微观物质的基石,在某种意义上说,无论是基本粒子理论或原子理论都应该建立在原子核理论基础上。原子只是原子核在核外空间(0.1纳米)的一个表象,而且是一种特殊(如地球环境)的物相,原子核在核外空间更普遍的存在的物相是等离子态。最简单的核是氢原子核,也称为质子,另一个核子称为中子,核子是最基本的粒子,其它的物理粒子如介子、轻子等都是原子核反应的产物,在原子核反应中最基本量子数是核的质量数A,这是个守恒量。目前的物理学有本末倒置之嫌,这是从原子核的质量观测数据和电子深度非弹性散射(deep inelastic scattering)实验数据得出的结论。我们可以回顾原子物理学和原子核物理学的历史,从1913年到1927年,曾经出现四个关于氢原子理论(玻尔理论、索末菲理论、薛定谔理论和狄拉克理论), 这些理论都能说明氢原子的光谱,而从森伯1932年提出原子核结构之后,到现在近八十年时间中,曾出现许多原子核的理论,却没有任何一个理论能够解释原子核的质量等静态数据和核的放射性,这说明人们对原子的认识基本是正确的,而对原子核的认识从一开始就进入了误区。

核能利用方面也不像前阶段那样迫切需要核物理提供数据、研制关键设备。从70年代起,核物理进入纵深发展和广泛应用的更为成熟的阶段。

和物理学的今天:在现阶段,由于重离子加速技术的发展,已能有效地加速从氢到铀全部元素的离子,能量达到每核子1×109eV,扩充了变革原子核的手段,使重离子核物理研究有全面的发展。强束流的中、高能加速器不仅提供直接加速的离子流,还能提供诸如π介子、Κ介子等次级粒子束,从另一方面扩充了研究原子核的手段,加速了高能核物理的发展。超导加速器将大大缩小加速器的尺寸,降低造价和运转费用,并提高束流的品质

核物理实验方法和射线探测技术也有了新的发展。微处理机和数据获取与处理系统的改进,影响深远。过去,核过程中同时测定几个参量就很困难,现在,一次记录几十个参量已很普遍。对一些高能重离子核反应,成千个探测器可同时工作,一次记录和处理几千个参量,以便对成千个放出的粒子进行测定和鉴别。另一方面,一些专用的核技术设备都附有自动的数据处理系统,简化了操作,有利于推广使用。

 

现代物理学分类4.2.4:核物理基础研究的主要目标

 

核物理基础研究的主要目标有两个方面:一是通过核现象研究粒子的性质和作用,特别是核子间的相互作用。一些重要问题如中子的电偶极矩、中微子的质量和质子的寿命等都要通过低能核物理实验测定;粒子间相互作用的重要知识也可由中、高能核物理提供。二是核多体系运动的研究。核多体系是运动形态很丰富的体系,过去主要研究了基态和低激发态的性质以及一些核反应机制,对于高自旋态、高激发态、大变形态以及远离β稳定线核素等特殊运动形态的研究才刚开始,对基态和低激发态的实验知识也不足,远小于多体波函数提供的信息。核运动形态的研究将在相当长的时期内成为核物理基础研究的主要部分。

现代物理学分类4.2.5核技术的应用

 

核技术的广泛应用是本阶段的重要特点。常用的小型加速器已投入工业生产,成千上万台加速器在研究所、大学、工厂和医院中运转,钴60放射源的使用更为普遍;另一方面,几乎没有一个核物理实验室不在从事核技术的应用研究。

核技术应用主要有以下几个方面:为核能源的开发服务,为大型核电站到微型核电池提供更精确的数据和更有效的利用途径。同位素的应用,这是应用最广泛的核技术,包括同位素示踪、同位素仪表和同位素药剂等。射线辐照的应用,利用加速器及同位素辐射源,进行辐照加工、食品消毒保鲜、辐照育种、探伤以及放射医疗。中子束的应用,除利用中子衍射分析物质结构外,还用于辐照、掺杂、测井、探矿及生物效应,如治癌。离子束的应用,大量的加速器是为了提供离子束而设计的,离子注入技术是研究半导体物理和制备半导体器件的重要手段,离子束则是无损、快速、痕量分析的主要手段,特别是质子微米束对表面进行扫描分析,对元素含量的探测极限可达1×10-151×10-18,是其他方法难以比拟的

在原子核物理学诞生、壮大和巩固过程中,核技术的应用使核物理基础的研究获得广泛的支持,后者又为前者不断开辟新的途径。这两方面的需要推进了粒子加速技术和核物理实验技术的发展;而这两门技术的新发展,又有力地促进了核物理的基础和应用的研究。这种相互推动、共同发展的趋势,将在核物理的新阶段中发挥日益巨大的作用。

核物理学的另一个目标就是利用粒子反冲技术造福人类,若成功研制小型加速器,人类将步入一个崭新的社会阶段。

 

现代物理学分类之4.3固体物理学

 

固体物理学solid-state physics)是凝聚态物理学中最大的分支。它研究的对象是固体,特别是原子排列具有周期性结构的晶体。固体物理学的基本任务是从微观上解释固体材料的宏观物理性质,主要理论基础是非相对论性的量子力学。主要方法是应用薛定谔方程来描述固体物质的电子态。晶体周期性势场中的电子态由布洛赫波函数表达。在此基础上,发展了固体的能带论,预言了半导体的存在。

固体物理学是研究固体性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。以后进一步研究一切处于凝聚状态的物体的内部结构、内部运动以及它们和宏观物理性质的关系。这类研究统称为凝聚态物理学

固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。它是物理学中内容极丰富、应用极广泛的分支学科。

固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。

新的实验条件和技术日新月异,为固体物理不断开拓出新的研究领域。极低温、超高压、强磁场等极端条件、超高真空技术、表面能谱术、材料制备的新技术、同步辐射技术、核物理技术、激光技术、光散射效应、各种粒子束技术、电子显微术、穆斯堡尔效应、正电子湮没技术、磁共振技术等现代化实验手段,使固体物理性质的研究不断向深度和广度发展。

由于固体物理本身是微电子技术、光电子学技术、能源技术、材料科学等技术学科的基础,也由于固体物理学科内在的因素,固体物理的研究论文已占物理学中研究论文三分之一以上。同时,固体物理学的成就和实验手段对化学物理、催化学科、生命科学、地学等的影响日益增长,正在形成新的交叉领域。

固体物理对于技术的发展有很多重要的应用,晶体管发明以后,集成电路技术迅速发展,电子学技术、计算技术以至整个信息产业也随之迅速发展。其经济影响和社会影响是革命性的。这种影响甚至在日常生活中也处处可见。

 

现代物理学分类之4.4凝聚态物理学

 

铷原子气体的速度分布数据,确定一种新物态的发现,这物态称为玻色-爱因斯坦凝聚态。

凝聚态物理学是当今物理学最大也是最重要的分支学科之一。凝聚态物理学是一门以物质的宏观物理性质作为主要研究对象的学科。所谓“凝聚态”是指由大量粒子(原子、分子、离子、电子)组成,并且粒子间有很强的相互作用的系统。它是研究由大量微观粒子(原子、分子、离子、电子)组成的凝聚态物质的微观结构、粒子间的相互作用、运动规律及其物质性质与应用的科学。自然界中存在着各种各样的凝聚态物质,它们深刻地影响着人们日常生活的方方面面。在最常见的三种物质形态——气态固态液态中,后两者就属于凝聚态。低温下的超流态超导态超固态玻色-爱因斯坦凝聚态磁介质中的铁磁态反铁磁态等,也都是凝聚态。

它是以固体物理学为主干,进一步拓宽研究对象,深化研究层次形成的学科。其研究对象除了晶体、非晶体与准晶体等固体物质外,还包括稠密气体、液体以及介于液体与固体之间的各种凝聚态物质,内容十分广泛。其研究层次,从宏观、介观到微观,进一步从微观层次统一认识各种凝聚态物理现象;物质维数,从三维到低维和分数维;结构从周期到非周期和准周期,完整到不完整和近完整;外界环境从常规条件到极端条件和多种极端条件交叉作用,等等,形成了比固体物理学更深刻更普遍的理论体系。

经过半个世纪的发展,凝聚态物理学已成为物理学中最重要、最丰富和最活跃的分支学科,在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现,是凝聚态物理学科的一个重要特点;与生产实践密切联系是它的另一重要特点,许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力。

凝聚态物理学起源于19世纪固体物理学低温物理学的发展。19世纪,人们对晶体的认识逐渐深入。1840年法国物理学家奥古斯特·布拉维导出了三维晶体的所有14种排列方式,即布拉维点阵1912年,德国物理学家冯·劳厄发现了X射线在晶体上的衍射,开创了固体物理学的新时代,从此,人们可以通过X射线的衍射条纹研究晶体的微观结构。

19世纪,英国著名物理学家法拉第在低温下液化了大部分当时已知的气体。1908年,荷兰物理学家海克·卡末林·昂内斯将最后一种难以液化的气体氦气液化,创造了人造低温的新纪录-269 °C(4K),并且发现了金属在低温下的超导现象。超导具有广阔的应用前景,超导的理论和实验研究在20世纪获得了长足进展,临界转变温度最高纪录不断刷新,超导研究已经成为凝聚态物理学中最热门的领域之一。目前凝聚态物理学面临的主要问题高温超导体的理论模型。

物理学分类之4.5激光物理学

 

发生的原囚、物理机制及与其它物质间相互作用的物理学分支。在全息照相、激光核聚变、材料加工、医疗、军事等领域应用极为)泛。激光技术是新技术革命中最活跃的领域之一

现在研究激光用在医院,军事上。

 

物理学分类之4.6等离子体物理学

等离子体物理学(plasma physics)是研究等离子体的形成、性质和运动规律的物理学分支学科。等离子体是宇宙中物质存在的主要形式,太阳及其他恒星、脉冲星、许多星际物质、地球电离层、极光、电离气体等都是等离子体。等离子体是物质的第四态,是由电子离子等带电粒子及中性粒子组成的混合气体,宏观上表现出准中性,即正负离子的数目基本相等,整体上呈现电中性,但在小尺度上具有明显的电磁性质。等离子体还具有明显的集体效应,带点粒子之间的相互作用是长程库仑作用,单个带点粒子的运动状态受到其它许多带电粒子的影响,又可以产生电磁场,影响其它粒子的运动。等离子体物理学目的是研究发生在等离子体中的一些基本过程,包括等离子体的运动、等离子体中的波动现象、等离子体的平衡和稳定性、碰撞与输运过程等等。等离子体物理学具有广阔的应用前景,包括受控核聚变空间等离子体等离子体天体物理低温等离子体等等。

等离子体物理学的研究方法:等离子体物理学常用的有单粒子轨道理论磁流体力学动理学理论三种研究方法。单粒子轨道理论不考虑带电粒子对电磁场的作用以及粒子之间的相互作用。磁流体力学将等离子体作为导电流体处理,使用流体力学和麦克斯韦方程组描述。这种方法只关注流体元的平均效果,因此是一种近似方法。动理学理论使用统计物理学的方法,考虑粒子的速度分布函数

 

现代物理学分类之4.7地球物理学

 

地球物理学 (geophysics)是地球科学的主要学科,是通过定量的物理方法和物理学原理,特别是通过地震反应折射重力地磁电磁放射能的方法,研究地球及地球形成和动力的学科,研究范围包括地球的水圈和大气层。地球物理学研究广泛系列的地质现象,包括地球内部的温度分布;地磁场的起源、架构和变化;大陆地壳大尺度的特征,诸如断裂、大陆缝合线和大洋中脊。现代地球物理学研究延伸到地球大气层外部的现象(例如,电离层电机效应〔ionospheric dynamo〕、极光放电〔auroral electrojets〕和磁层顶电流系统〔magnetopause current system),甚至延伸到其他行星及其卫星的物理性质。

地球物理学的很多问题与天文学的相似,因为研究对象很少能直接观察,结论应当说主要是根据物理测量的数学解释而得出的。这包括地球重力场测量,在陆地和海上用重力测量仪,在空间则用人造卫星;还包括行星磁场的磁力测量;又包括地下地质构造的地震测量,这用地震或人工方法产生的弹性反射波和弹性折射波来进行(参阅seismic survey)

用地球物理技术来进行的研究,证明在为支持板块构造学(plate tectonics)理论提供证据方面是极其有用的。例如,地震学资料表明,世界地震带标示出了组成地球外壳的巨大刚性板块的边界,而古地磁学研究的发现,又使得追索地质历史时期大陆的漂移成为可能。

 

现代物理学分类之4.8大气物理学气象学

 

大气物理学atmospheric physics研究大气的物理属性、物理现象、物理过程及其演变规律的学科。是大气科学的一个分支。它主要研究大气中的声象、光象、电象、辐射过程、云和降水物理、近地面层大气物理、平流层和中层大气物理,既是大气科学的基础理论部分,又是环境科学的一个部分。

人们对大气中的许多物理现象,如虹、晕、华、雷、闪电等早巳注意,并进行过研究,但内容分散在物理、化学、天文、无线电等学科之中,把它们纳入大气物理学一个学科,则是近三、四十年中的事情。

20世纪40年代以来,随着人类在大气中活动范围的迅速扩展,大气物理学的研究领域不断扩大。如为了改进大气中的电波通信、光波通信、提高导弹制导水平,就需要了解它们所赖以传播的大气介质及相互作用,因此就要研究大气的声、光、电和无线电气象;又如,为避免晴空湍流引起飞机堕毁的事故,就要研究大气湍流。大气物理学主要研究大气中的声学光学电学辐射过程,云和降水物理,大气底层的边界层大气物理,平流层和中层大气物理,既是大气科学基础理论的一个部分,又和许多边缘学科,例如农业气象学、大气环境科学等有密切的关系。

大气物理学的许多内容,早就受到人们的关注。在早期,所有的大气热力学大气动力学研究内容均包含在大气动力学和天气学中,20世纪20年代,人们开始关注较小尺度大气动力学和热力学过程,其中包括了大气底层的边界层结构的研究,因而形成大气湍流和大气边界层的研究方向,40年代大气中污染物的扩散受到了关注,开始形成污染气象学的研究方向。由于工农业对人工降水的需求,并对云的微观和宏观有了较深入的了解,因而逐渐形成对云雾物理学的系统研究。有关大气中的光学、声学和电学现象的研究,早在气象学、物理学和无线电学中进行了一些研究,40年代开始的气象雷达观测,60年代气象卫星的释放,对形成大气光、声、电学、雷达气象学和卫星气象学的形成起了极大的推动作用。

大气物理学的研究不仅需要发展有关的理论还需要系统精确的实验资料予以验证。一般气象台站网的观测内容远不能满足实际和理论工作的要求,因而设计和制造专用的仪器设备,组织精细的观测是很重要的。例如大气湍流的观测需要快速反应的温度、湿度和风的观测仪器;云雾物理的观测则需要使用飞机和特种雷达;气象卫星安装的仪器几乎全都属于大气遥感的设备。

由于工业生产排入大气中的大量气溶胶和污染物通过扩散造成大气污染,有些通过沉降或降水形成酸雨等,又被送到地面,导致土地河流污染、造成对植物和人类的严重影响。既要发展生产,又必须使大气不超过其对污染物质的稀释能力,这就要详细研究大气边界层的物理特性。

生产活动和人类的其他活动,影响着自然环境。如大气中二氧化碳含量逐年增加,影响着大气辐射程和气候变化规律。这些又影响农业生产,特别是粮食生产。粮食问题导致对气候变化的关注,进而促进了对大气辐射问题的研究。

工农业用水逐年增加,就必须充分利用大气中丰富的水分,这就要开发大气中的水资源;此外,为避免或减轻天气灾害,又推动着人工影响天气试验研究的广泛开展,从而促进了云和降水物理学的研究。

20世纪60年代以来,遥感技术飞速地发展起来,辐射传输是遥感的基础,由此推动着大气辐射学的研究;人造卫星、电子计算机的发展,新技术(如激光、雷达、微波)的应用,给大气物理研究提供了有力的探测工具,获得了更多的探测资料,从而大大加速大气物理学发展的进程。

大气物理学主要包括大气边界层物理学、云和降水物理学、雷达气象学无线电气象学大气声学大气光学和大气辐射学、大气电学、平流层和中层大气物理学。

 

现代物理学分类4.9海洋物理学海洋学

 

海洋物理学是以物理学的理论、技术和方法,研究海洋中的物理现象及其变化规律,并研究海洋水体与大气圈、岩圈和生物圈的相互作用的科学。它是海洋科学的一个重要分支,与大气科学、海洋化学、海洋地质学、海洋生物学有密切的关系,在海洋运输、资源开发、环境保护、军事活动、海岸设施和海底工程等方面有重要的应用。

海洋物理学作为海洋科学的一个独立分支学科,始于19世纪末叶,但其下属一些分支的发展历史,却可追溯到自然地理学和海洋学的萌芽时代。海洋物理学发展史,可概括为三个阶段:海洋考察;早期的理论研究和观测仪器的研制;现代海洋学。

早在公元前三世纪,希腊学者毕塞亚斯在北海考察中,就初步进行了潮汐和地磁偏角的观测,但是专门的海洋考察则始自19世纪。其中较著名的有闪电(1868)豪猪(18691870)等的海洋考察。特别是英国挑战者”(18721876)具有划时代意义的环球海洋考察。

19世纪末至20世纪初,德国羚羊号对世界大洋的考察,法国劳动者号和法宝号对北大西洋的考察,美国企业号的环球考察,都涉及到海洋物理学的内容。这些考察,从实践上为海洋物理学的早期发展奠定了基础。

以后陆续出现许多专门的海洋考察活动,内容更加广泛和深入,例如德国流星号的南大西洋考察,美国卡内基号的地磁观测,瑞典信天翁号对三大洋赤道无风带的深海考察等,都从不同的方面促进了海洋物理学的发展。

17世纪到19世纪末叶,一些杰出的物理学家和数学家曾对海洋中的某些物理现象进行过研究,为海洋物理学中一些分支的形成和发展奠定了理论基础。

在潮汐理论方面。1687年,英国牛顿根据他发现的万有引力定律,用引潮力解释了潮汐的成因;1740年,瑞士伯努利建立了平衡潮学说;1775年,法国拉普拉斯建立了潮汐动力学理沦,给出了考虑地转偏向力影响的潮汐动力学方程组,及在特定条件下的特解;1845年,英国艾里提出了潮汐的长渠波动理论,并对其进行了较深入的研究;18721879年,英国汤姆逊(开尔文)设计了潮汐分析和预报的机械装置;18781891年,英国达尔文研究了地球潮汐,并提出了海洋潮汐分析和预报的调和分析方法。

在波浪理论方面。1802年,捷克格尔斯特纳发表了深水表面波的理论;1839年,英国格林建立了小振幅波理论,并导出了以波长表示的相速公式;1847年,英国斯托克斯建立了有限振幅波理论和小振幅内波理论,后来在1876年又提出了与波动能量传播有关的群速公式。

1857年,英国汤姆逊(开尔文)首先导出了深海海水的绝热温度梯度公式;1898年,挪威皮耶克尼斯推广了理想斜压流体的环流定理,发表了适用于旋转地球上的环流定理。

在海洋声学研究方面。1825年,瑞士科拉东和法国斯图谟在日内瓦测量了声在水中的传播速度;1912年,美国费森登设计并制造了一种新型的动圈换能器,从而制成第一台水下发信和回声探测设备。此后,又开始了声在海洋中的传播规律的研究。

在海洋电磁理论方面。1831年,英国法拉第发现了电磁感应现象,并于1832年指出,在地磁场中流动的海水,就像在磁场中运动的金属导体一样,也会产生感应电动势;1851年,英国渥拉斯顿在横过英吉利海峡的海底电缆上,检测到与潮汐周期相同的电位变化,证实了法拉第的预言。

19世纪末叶到20世纪初,随着海洋调查的进一步发展,海洋物理学的研究进入了一个新的发展阶段。这一阶段的主要标志是,应用流体动力学的方法来研究海洋环流。例如,1902年,挪威桑德斯特勒姆和海兰·汉森基于旋转地球上的环流定理,发展了在现代海洋环流研究和海洋调查中广泛应用的动力计算方法。1901年和1905年,瑞典埃克曼对美国莫里在1855年指出的海面风和表层海流之间的关系,作出了理论的解释,从而建立了风漂流理论。

自此以后,海洋物理学的研究即以海洋环流理论研究为重点,密切结合水文物理和化学要素的观测实验,不断地向前发展。

20世纪60年代以来,随着科学技术的迅速发展,海洋物理要素的调查监测技术和研究设备日益完善,各种海洋过程的理论模式和海洋信息处理系统相继建立,以浮标阵为主体的海上现场对测试验,及包括航天遥感技术在内的新技术,得到广泛应用,都有力地促进了现代海洋物理学的研究,沿着理论和观测实验紧密结合的途径向前发展。

 

现代物理学分类4.9.1:海洋物理学的主要理论

 

1)潮汐理论:1687年,英国I.牛顿根据他发现的万有引力定律,用引潮力解释了潮汐的成因。1740年,瑞士D.伯努利建立了平衡潮学说。1775,法国P.-S.拉普拉斯建立了潮汐动力学理论,给出了考虑地转偏向力影响的潮汐动力学方程组及在特定条件下的特解。1845年,英国G.B.艾里提出了潮汐的长渠波动理论,并对其进行了较深入的研究。18721879,英国W.汤姆孙(开尔文)设计了潮汐分析和预报的机械装置。18781891,英国G.H.达尔文研究了地球潮汐,并提出了海洋潮汐分析和预报的调和分析方法。

2)波浪理论:1802,捷克F.J.von格尔斯特纳发表了深水表面波的理论。1839年,英国G.格林建立了小振幅波理论,并导出了以波长表示的相速公式。1847年,英国G.G.斯托克斯建立了有限振幅波理论和小振幅内波理论;后来在1876年又提出了与波动能量传播有关的群速公式。

3)环流定理:1898年,挪威V.皮耶克尼斯推广了理想斜压流体的环流定理,发表了适用于旋转地球上的环流定理。

4海水状态方程:1857年,英国W.汤姆孙(开尔文)首先导出了深海海水的绝热温度梯度公式。

5)海洋声学研究:1826年,瑞士J.D.科拉东和法国J.C.F.斯图谟在日内瓦测量了声在水中的传播速度。1912年,美国R.A.费森登设计并制造了一种新型的动圈换能器,从而制成第一台水下发信和回声探测设备。此后,又开始了声在海洋中的传播规律的研究。

6)海洋电磁理论:在海洋电磁理论方面。1831年,英国法拉第发现了电磁感应现象,并于1832年指出,在地磁场中流动的海水,就像在磁场中运动的金属导体一样,也会产生感应电动势;1851年,英国渥拉斯顿在横过英吉利海峡的海底电缆上,检测到与潮汐周期相同的电位变化,证实了法拉第的预言。

 

现代物理学分类4.9.2:海洋物理学的研究内容

 

1)研究海水各类运动和海洋大气及岩圈的相互作用的规

律,为海况和天气的监测及预报提供依据;

2)研究海洋中的声、光、电现象和过程,以掌握其变化和机

制;

3)进行为上述两项研究所必需的海洋观测,并研究海洋探

测的各种物理学方法,从而实现有计划地在海上进行现场的专题观测和实验。通过这三方面的研究,形成了海洋物理学中一系列的分支学科。其中主要的有物理海洋学、海洋气象学、海洋声学、海洋光学、海洋电磁学和河口海岸带动力学等。主要研究:

1)各种时-空尺度的海水运动规律。

2)海洋物理要素场的形成机制及其频率-波数谱的结构,特别是大洋中尺度涡、海洋内波、海水层结的细微结构和海洋湍流等。

  3)水团和环流结构,如大洋环流、赤道潜流、上升流、下降流等。

4)近岸海区和陆架区的水文规律。

5)声波、光辐射、无线电波、电磁场在海洋中的传播规律和技术应用。

6)为海上生产服务的应用课题。

现代物理学分类4.9.3:海洋物理学的基本内容

海洋物理学的主要研究海水各类运动和海洋与大气及岩圈的相互作用的规律,为海况和天气的监测及预报提供依据;研究海洋中的声、光、电现象和过程,以掌握其变化和机制;研究海洋探测的各种物理学方法,从而实现有计划地在海上进行现场的专题观测和实验。通过这三方面的研究,形成了海洋物理学中一系列的分支学科,其中主要的有物理海洋学、海洋气象学、海洋声学、海洋光学、海洋电磁学和河口海岸带动力学等等。

物理海洋学是现代海洋物理学中最早发展起来的一个分支学科,其研究内容最为广泛。物理海洋学主要研究发生在海洋中的流体动力学和热力学过程,其中包括海洋中的热量平衡和水量平衡,海水的温度、盐度和密度等海洋水文状态参数的分布和变化,海洋中各种类型和各种时空尺度的海水运动(如海流、海浪、潮汐、内波、风暴潮、海水层结的细微结构和湍流等)及其相互作用的规律等等。

海洋气象学是物理海洋学和气象学密切结合的一个边缘学科,它主要研究发生在诲洋和大气边界层中的热量、动量和物质交换过程,海洋与大气的大。中尺度相互作用和中、长期的海况及气候变迁规律,海上天气过程和现象,特别是危险性天气过程的预报。

海洋声学是研究声波在海洋水层、沉积层和海底岩层中的传播规律,及在海洋探测和海洋开发中的应用的学科,其主要研究内容包括海洋中声的传播和声速分布、声吸收和声散射、海洋中的自然噪声、诲洋水层中的声学探测。海底声学特性和海底声学勘探等等。

 海洋电磁学主要研究海洋的电磁特性,海洋中的天然电磁场和电磁波的运动形态及传播规律,电磁彼在海洋探测和通信及海洋开发中的应用。

海洋光学的研究内容,在基础研究方面主要是海洋辐射传递过程的研究,以及海面光辐射、水中能见度、海水光学传递函数、激光与海水相互作用等研究;在应用研究方面主要是遥感、激光、水中照相工程等海洋探测方法和技术的研究。

河口海岸带动力学主要研究河口地带和海岸地带中海水的各种运动规律,河口海岸带地形地貌的变化及产生这些变化的动力因素。这些研究对海岸防护、港口建筑等都有密切的关系。

 此外,随着现代海洋资源开发和近岸海区海洋学研究的进一步发展,在海洋物理学的研究领域中,正在形成一些带有区域性的派生学科,如陆架物理海洋学等等。

 海洋物理学的发展,在很大程度上取决于观测技术和观测方法。现代海洋物理学的观测技术,将朝着自动化、遥感化的方向发展。人们将广泛利用人造卫星进行全球性海洋物理方面的观测,并建立国际间的计算机网络,以储存、交换和处理海洋观测数据。这些将促进海洋物理学的进一步发展。

海洋开发将是未来海洋科学的发展方向。在海洋农牧化、捕捞、海洋石油勘探、海洋能源利用等开发活动中,将不断对海洋物理学提出更高的要求。

研究海洋中的物理现象及其变化规律,并研究海洋水体与大气圈、岩石圈和生物圈的相互作用的科学。海洋科学的重要分支,物理学的一部分。与大气科学、海洋化学、海洋地质学、海洋生物学有密切关系。

此外,随着现代海洋资源开发和近岸海区海洋学研究的进一步发展,在海洋物理学的研究领域中,正在形成一些带有区域性的派生学科,如陆架物理海洋学等等。

海洋物理学的研究内容十分广泛,而当前的研究课题可以大致归纳为如下几个方面:

      研究各种时-空尺度的海水运动及其相互关系,特别是大、中尺度的海洋-大气相互作用及其时-空变异,从而建立相应的热力学-流体力学模型,以提高气象预报与海况预报的准确率。

       研究各种海洋物理要素场的形成机制及其频率-波数谱的结构,特别是海洋中的中尺度涡、内波、海水层结的细微结构和海洋湍流等。

      研究全球大洋和各分区的水团和环流结构。

      研究全球大洋各分区,特别是近岸海区和陆架区的水文物理特征。

      研究声波、光辐射、无线电波、电磁场在海洋中的传播规律和声、光、电技术探测海洋(包括通信)的方法和技术。

      研究与海洋资源开发、环境保护、航海、渔业和海洋工程等有直接关系的海洋物理学问题,为人类的海上生产实践服务。

 

现代物理学分类4.9.3:海洋物理学的科学展望

 

为了开发海洋和利用海洋,使海洋更好地为人类服务,在海洋物理学的发展方面,下面几点将是人们努力的主要方向:

1)观测技术和观测方法的改进。海洋物理学的发展,在很大程度上取决于观测技术和观测方法。现代海洋物理学的观测技术,将朝着自动化、遥感化的方向发展。人们将广泛利用人造卫星进行全球性海洋物理方面的观测,并建立国际间的计算机网络,以储存、交换和处理海洋观测数据。这些将促进海洋物理学的进一步发展。

2)进一步研究海洋中物理现象的规律。海洋中发生的许多物理现象和过程,有一些已得到初步的研究。因为这些现象与人类生活环境密切相关,所以有必要进一步去探索其规律。例如,深入了解大尺度海-气相互作用,将使人们能较准确地进行气候预报,甚至可能控制局部地区的气候。

3)进一步为海洋资源开发服务。海洋开发将是未来海洋科学的发展方向。在海洋农牧化、捕捞、海洋石油勘探、海洋能源利用等开发活动中,将不断对海洋物理学提出更高的要求。海洋物理学今后的发展,也将在很大程度上取决于海洋开发的需要。

 

现代物理学分类4.10天体物理学天文学

天文物理学是研究宇宙的物理学,这包括星体的物理性质(光度密度温度化学成分等等)和星体与星体彼此之间的相互作用。应用物理理论与方法,天文物理学探讨恒星结构恒星演化太阳系的起源和许多跟宇宙学相关的问题。由于天文物理学是一门很广泛的学问,天文物理学家通常需要应用很多不同的学术领域,像经典力学、电磁学、统计力学、量子力学、相对论、粒子物理学等等。

天文物理实验数据大多数是依赖观测电磁辐射获得。比较寒冷的星体,像星际物质星际云会发射无线电波大爆炸后,经过红移,遗留下来的微波,称为宇宙微波背景辐射。研究这些微波需要用到非常大的无线电望远镜

太空探索大大地扩展了天文学的疆界。由于地球大气层的干扰,红外线紫外线伽马射线X射线天文学必须使用人造卫星在地球大气层外做观测实验。

光学天文学通常使用加装电荷耦合元件光谱仪的望远镜来做观测。由于大气层会干涉观测数据的品质,还必须配备调适光学系统,或改用太空望远镜,才能得到最优良的影像。在这频域里,恒星的可见度非常高。借着观测化学频谱,可以分析恒星星系星云的化学成份。

理论天文物理学家的工具包括分析模型计算机模拟。天文过程的分析模型时常能使学者更深刻地理解内中奥妙;计算机模拟可以显示出一些非常复杂的现象或效应。

大爆炸模型的两个理论栋梁是广义相对论宇宙学原理。由于太初核合成理论的成功和宇宙微波背景辐射实验证实,科学家确定大爆炸模型正确无误。最近,学者又创立了ΛCDM模型来解释宇宙的演化,这模型涵盖了宇宙膨胀cosmic inflation)、暗能量暗物质等等概念。

 

现代物理学分类4.11生物物理学

 

生物物理学(Biophysics)是运用物理学的理论、概念、技术和方法,研究生命物质的物理性质、生命过程的物理和物理化学规律,以及物理因素对生物系统作用机制的科学。生物物理学是物理学生物学相结合的一门边缘学科,是生命科学的重要分支学科和领域之一。生物物理学是研究生物各层次结构与功能的关系、生命活动的物理、物理化学过程和物质在生命活动过程中表现的物理特性的生物学分支学科。生物物理学旨在阐明生物在一定的空间、时间内有关物质能量信息的运动规律。

关于生物物理学属于生物学的分支还是物理学的分支,一些生物学家认为他们研究生命现象时只是引入了物理学的理论和方法,属于生物学的一个分支。但有些物理学家认为,研究生命的物质运动,只是物理学研究对象由非生命物质扩展到生命物质。应该属于物理学的分支。不同研究领域的学者处于不同的角度,也就有了不同的定义。

16世纪末开始,人们就开展了生物物理现象的研究,直到20世纪40年代薛定谔Schr?dinger)在都柏林大学关于“生命是什么”的讲演之前,可以算是生物物理学发展的早期。
    19
世纪末,生理学家开始用物理概念如力学流体力学光学电学热力学的知识深入到生理学领域,这样就逐渐形成一个新的分支学科,许多人认为这就是最初的生物物理学。实际上物理学与生物学的结合很早以前就已经开始。例如克尔肖(Kircher)17世纪描述过生物发光的现象;波莱利(Borrelli)在其所著《动物的运动》一书中利用力学原理分析了血液循环和鸟的飞行问题。18世纪伽伐尼(Galvani)通过青蛙神经由于接触两种金属引起肌肉收缩,从而发现了生物电现象19世纪,梅那(Mayer)通过热、功和生理过程关系的研究建立了能量守恒定律。20世纪40年代,《医学物理》介绍生物物理内容时,涉及面已相当广泛,包括听觉、视觉、色觉、肌肉、神经、皮肤等的结构与功能,采用了电镜、荧光、X射线衍射、电、光电、电位、温度调节等技术,并报道了应用电子回旋加速器研究生物对象。

著名的量子物理学家薛定谔在“生命是什么”的报告中提出几个观点,诸如负熵与生命现象的有序性、遗传物质的分子基础,生命现象与量子论的协调性等,以后陆续都被证明是极有预见性的观点,而且均得到证实。这有力地说明近代物理学在推动生命科学发展中的作用。

20世纪50年代,物理学在各方面取得重大成就之后,物理学实验和理论的发展为生物物理学的诞生提供了实验技术和理论方法。例如,用X射线晶体衍射技术对核酸和蛋白质空间结构的研究,开创了分子生物学的新纪元,将生命科学的许多分支都推进到分子水平,同时也把这些成就逐步扩大到细胞、组织、器官等,为生物物理学的诞生创造了生物学条件,成为微观生物物理学发展的一条主干。此外,信息论、控制论、计算机科学技术、非线性科学的发展,还为生物物理学的发展提供了数学工具和信息论基础。应用生物信息论与控制论、非平衡态热力学、非线性与复杂性等的研究,从宏观角度对生命现象进行了探讨,成为宏观生物物理学发展的基础。这两方面的结合使生物物理学以崭新的面貌出现在自然科学,特别是生命科学的行列之中,成为一门需要较多数学与物理基础,研究生命问题的独立发展的边缘学科。

物理概念对生物物理发展影响较大的除了薛定谔的讲演,还有

N·威纳关于生物控制论的论点;前者用热力学和量子力学理论解释生命的本质引进了“负熵”概念,试图从一些新的途径来说明有机体的物质结构、生命活动的维持和延续、生物的遗传与变异等问题。后者认为生物的控制过程,包含着信息的接收、变换、贮存和处理。他们论述了生命物质同样是物质世界的一个组成部分,既有它的特殊运动规律,也应该遵循物质运动的共同的一般规律。这就沟通了生物学和物理学两个领域。现已在生物的各个层次,以量子力学统计力学的概念和方法进行微观和宏观的系统分析。

现代物理学分类4.11.1生物物理学的研究任务

生物物理学的不断发展和完善,一定会极大地促进生命科学的发展,并将带来对于生命现象的本质的新突破。二十一世纪是生命科学的世纪,更是学科交叉、科学走向统一的世纪。新的世纪留给生物

物理学的任务有:
  (1)发掘非平衡开放系统特性的主要规律,也就是找出生命的热力学基础。
  (2)从理论上解释进化个体发育的现象。
  (3)解释自身调节和自我复制的现象(自组织现象)。
  (4)从原子、分子水平上揭露生物过程的本质也就是找到活跃在细胞内的蛋白质核酸及其他物质的结构和生物功能的联系;此外,还要在研究生命体在更高的超分子水平上、在细胞的水平上及在构成细胞的细胞器的水平上的物理现象。
  (5)设计出研究生物功能物质及由这类物质构成的超分子结构的物理方法和物理化学方法,并对利用这种方法所得到的结果提供理论解释。
  (6)对神经脉冲的发生和传播、肌肉收缩、感觉器官对外部信号的接收及光合作用等高度复杂的生理现象,提供物理的解释。
  (7)解释怎样由物质形成了意识。  

现代物理学分类4.11.2生物的物理性质  

     
20
世纪20年代开始陆续发现生物分子具有铁电、压电、半导体、液晶态等性质,生命体系在不同层次上的电磁特性,以及生物界普遍存在的射频通讯方式。但许多物理特性在生命活动过程中的意义和作用,则远没有搞清楚。比如几乎所有生物,体内的蛋白质都是由L型氨基酸组成,而组成核酸的核糖又总是D型。为什么有这样的旋光选择性,生命起源和生物进化有何关系,就有待探讨。1980年发现两个人工合成DNA片段呈左旋双螺旋,人们普遍希望了解自然界有无左旋DNA存在。1981年人们在两段左旋片段中插入一段A-T对,整个螺旋立即向右旋转,能否说明自然界不存在左旋DNA呢?这种特定的旋光性对生命活动的意义现仍无答案。根据生物的物理特性可以测出各种物理参数。但是由于生命物质比较复杂,在不同的环境条件下参量也要改变。已有的测试手段往往不适用,尚待技术上的突破,才有可能进一步阐明生命的奥秘。

   
现代物理学分类4.11.3生命活动的物理及物理化学过程     

 

活跃在生物体内的基本粒子(目前研究到电子和质子)的研究,也是探索生命活动的物理及物理化学过程的一个主体部分。生物都是含水的,研究水溶液中电子的行为,对了解生命活动的理化过程极为重要。人们已经发现生物的质子态、质子非定域化和质子隧道效应等现象,因此需进一步开展量子生物学的研究,探索这些基本粒子在活体内的行为。光合作用叶绿素最初吸收光子只在10-15秒瞬间完成,视觉过程和高能电离辐射最初始的能量吸收也都是瞬间完成的,这些能量在体内最初的去向和行为,从吸收到物理化学过程的出现,究竟发生了什么物理作用,这就需要既灵敏又快速的测试技术。生命活动过程中过去不被注意的组分,包括甲基、酰基这样的基团,水分子和金属离子,它们恰恰活跃地作用于大分子之间,在生物大分子相互作用时,不仅是搭桥牵线以引发大分子的构象变化,而且它们自身就参与结构和功能变化。如甲基化与神经传导、生物信号传递、基因开关等均有密切关系。酰化作用、金属离子如钙、镁等的作用也早被注意。在膜通道研究过程中,发现了钙和钙调素的作用。生物体内的游离子(自由水)可以由氢键缔合成水化层,它不是结合水,但对生物结构有关并参与生命活动。生物水既是质子供体,也是质子受体,因此水在生物体内决不是简单的介质。蛋白质56左右变性,但我们能在70以上的温泉中找到生物;人工培养的细胞保存在-190,解冻后细胞仍与正常态一样,这些生物体内水的结构状态是怎样?如果能把这些极端状态的水的结构与性质阐明,将有助于对生命规律的理解。
   
生物在亿万年进化过程中,最终选择膜作为最基本的结构形式。从通透、识别、通讯,到能量转换等各种生命活动几乎都在膜上进行,生物膜不仅提供场所,它本身也积极参与了活动。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多