半导体温差发电组件的应用
在此,我们介绍一种新型的半导体温差发电模块,对其性能进行研究,并在此基础上构建了一套小型发电系统,可利用煤灶、篝火等进行发电。并将发的电储在蓄电池中,从而用以照明等。 半导体温度发电模块,是一种利用温差直接将热能转化为电能的全固态能量转化发电装置,它无需化学反应且无机械移动部分,因而具有无噪音,无污染,无磨损,重量轻,使用寿命长等种种优点。被广泛地用于工业余热,废热的回收利用,航天辅助电力系统等。随着能源的短缺及人们不断提高的环境保护意识,特别是全球气候变暖问题,半导体温差发电技术以其各种优点越来越引起人们的关注。 半导体温差发电模块是根据塞贝克效应制成的,即把两种半导体的接合端置于高温,处于低温环境的另一端就可得到电动势E:E=As$T=As(T2-T1)。式中:As为塞贝克系数,其单位为V K或LV K.塞贝克系数AS是由材料本身的电子能带结构决定的。 我们采用的半导体温差发电模块外形尺寸为40mm×40mm×4mm,共有127对PN结,具有一定的耐高温特性(热端稳定工作温度可达180℃,最高短时冲击温度220℃),热电转化效率为11.7%。
我国是世界的产煤大国兼农业大国,在广大的农村地区,人们利用煤灶或煤炉烧煤煮饭,取暖等。在北方农村,煤炉通常是24小时持续燃烧。我们利用上述温差发电模块研制发电系统,以便利用煤灶,炉的热能产生电能给手机、蓄电池充电或直接带动节能灯,低功耗电视等其它负载。这一发电系统也适用于野外探险时的篝火,从而解决无市电环境下的用电问题。 基于温差发电模块组的盛水器装置,我们设计的装置是,用底部平整的盛水器,在其底部涂上导热硅脂与温差模块的冷端保持良好的热接触(开水的温度为100℃,所以冷端的温度可维持在120℃~130℃)。模块热端向下紧贴在铝片上(也使用导热硅脂)。盛水器与铝片用销钉锁紧以保持温差模块两面与热,冷源的紧密接触。铝片另外有两个支柱用来调节与煤炉或其它热源之间的距离,当热 源温度较高时可调大铝片与热源之间的空隙,从而使热端温度不高于200℃。 我们采用电炉作为热源,控制热端温度在180-200℃之间,开水沸腾后,测得模块的冷端温度在120~130℃之间,因而STM两端温差最低可维持50~60℃。
通过实验,我们可以看出,半导体温差发电模块作为电源,其串并联的情况与其它电源的串并联并无本质区别。
新疆一科研所曾利用发电组件,制作了家用炉灶(炉子烧的是山上的柴草)发电装置。通过散热片把发电组件固定在炉子壁上,冷面散热采用空心的铝板,让山上的冰水从其中流过,散热效果很好。能够较好地保持发电组件两面的温差。发电效果不错。
日本东芝公司开发温差发电设备
日本东芝公司最近公布,该公司已开发出一种利用温差发电的设备。这种设备可将排放到大气中的汽车尾气、工厂排出的热气等进行再利用。东芝计划从2005年起批量生产这种设备。 据本地媒体报道,这种设备的形状为边长为4厘米的板状正方形。其工作方式是其中一个面受热,另一面采用汽车运动中的风来冷却,使发电组件两面间 存在温差,通过内置的半导体进行发电。目前市场上销售的其它公司生产的同类产品的耐热性仅为200度,东芝的这种新产品则能承受汽车引擎排出的300度以上的热气,并由此转化为可供车内使用的电力,实现废气再利用。
使用普通燃料或利用余热热源来发电: 使用普通化石燃料作热源以形成温差发电器的实用系统,首推美国专为野外使用而生产的军用电源。它们以各类军队常用的燃油燃烧产生的热量为热源转换为供给战场,尤其是前沿阵地各种电器设备的电能。由于在这些环境中低噪声、能快速启动、能长期连续工作、易携带、维护方便、后勤保障便利等,是使用方首要的考虑,在这些方面,温差电转换发电器大大优于常用的内燃式驱动发电机和化学蓄电池。1988年美国生产了一种外型41.2cmX42.2cmX27.3cm的燃烧式温差发电器。该设备的发电元件由120对热电偶组成,可使用多种军用燃油,一次装载后能连续工作12小时,产生13.1V直流电压,向负载提供120W的电功率。 随着环保意识的加强,以及对传统能源未来中间匮缺的担心,充分利用余热发电的技术手段日益受到关注。2003年黎巴嫩大学的学者将温差电发电器的热端与该国的一种做饭用的火炉外壁连接,冷端置于空气中,利用炉壁的高温与环境的温差来发电。其实验中所使用的温差电元件即产自中国,因为中国的元件性价比最高,该设备实验中单片元件可产生4W的电功率。中国目前已成为世界上最大的温差电元件生产出口国,这为我国未来温差电的广泛应用打下了坚实的基础。
我们只是抛砖引玉,为大家进一步开发出更多更好的温差发电器,提供参考。
注意:
1、 发电组件的两面达到温差60度时,电压3.5伏,电流3安。若温差在0—60度之间,电压在0—3.5V之间变化,电流在0—3A之间变化。
2、 安装时发电组件两面都要加上金属散热片,能保证组件的热面均匀受热,冷面要有很好的散热条件,如:风冷、水冷等方式。
3、 使用时,热面温度不能超过200度。
大家看下面的装置,蜡烛也可以发电。
温差发电原理是建立在帕尔贴效应的基础上实现的,即当电流流经两种不同材料的导体形成的接点时,接点处会产生放热和吸热(制冷)现象。放热或吸热依电流方向不同而改变,放热或吸热量大小则由电流大小来决定。温差发电应用的是逆效应,当这种温差发电组件的两面有足够量的温差时(现在一面是 烛火的热量,另一面是传热很好的散热器即上方那块铝型材),就会产生一定量的直流电,发出的直流电的大小与两面温差的大小有关,当然与温差发电组件的规格也非常有关。虽然发出的电量很有限,但如果设计合理,是可以利用发出的电量同时给手机、GPS等用电设备充电、LED照明、听收音机、或遇险时发出声光求救信号的。
温差电池
温差电池简介
-------------------------------------------------------------------------------- 1821年,赛贝克发现,把两种不同的金属导体接成闭合电路时,如果把它的两个接点分别置于温度不同的两个环境中,则电路中就会有电流产生。这一现象称为塞贝克(Seebeck)效应,这样的电路叫做温差电偶,这种情况下产生电流的电动势叫做温差电动势。例如,铁与铜的冷接头为1℃,热接头处为100℃,则有5.2mV的温差电动势产生。
温差电池就是利用温度差异,使热能直接转化为电能的装置。温差电池的材料一般有金属和半导体两种。用金属制成的电池赛贝克效应较小,常用于测量温度、辐射强度等。这种电池一般把若干个温差电偶串联起来,把其中一头暴露于热源,另一个接点固定在一个特定温度环境中,这样产生的电动势等于各个电偶之和。再根据测量的电动势换算成温度或强度。例如,我们在日常生活中常用它来测量冶炼及热处理炉的高温。 用半导体制成的温差电池赛贝克效应较强,热能转化为电能的效率也较高,因此,可将多个这样的电池组成温差电堆,作为小功率电源。它的工作原理是,将两种不同类型的热电转换材料N型和P型半导体的一端结合并将其置于高温状态,另一端开路并给以低温时,由于高温端的热激发作用较强,空穴和电子浓度也比低温端高,在这种载流子浓度梯度的驱动下,空穴和电子向低温端扩散,从而在低温开路端形成电势差;如果将许多对P型和N型热电转换材料连接起来组成模块,就可得到足够高的电压,形成一个温差发电机。
温差电技术研究始于20世纪40年代,于20世纪60年代达到高峰,并成功地在航天器上实现了长时发电。当时美国能源部的空间与防御动力系统办公室给出鉴定称,“温差发电已被证明为性能可靠,维修少,可在极端恶劣环境下长时间工作的动力技术”。近几年来,温差发电机不仅在军事和高科技方面,而且在民用方面也表现出了良好的应用前景。 在远程空间探索方面,人们从上个世纪中叶以来不断将目标投向更远的星球,甚至是太阳系以外的远程空间,这些环境中太阳能电池很难发挥作用,而热源稳定,结构紧凑,性能可靠,寿命长的放射性同位素温差发电系统则成为理想的选择。因为一枚硬币大小的放射性同位素热源,就能提供长达20年以上的连续不断的电能,从而大大减轻了航天器的负载,这项技术已先后在阿波罗登月舱、先锋者、海盗、旅行者、伽利略和尤利西斯号宇宙飞船上得到使用。
此外,据德国《科学画报》杂志报道,来自德国慕尼黑的一家芯片研发企业研究出的这种新型电池,主要由一个可感应温差的硅芯片构成。当这种特殊的硅芯片正面“感受”到的温度较之背面温度具有一定温差时,其内部电子就会产生定向流动,从而产生微电流。负责研发这种电池的科学家温纳·韦伯介绍说,“只要在人体皮肤与衣服等之间有5℃的温差,就可以利用这种电池为一块普通的腕表提供足够的能量”。 虽然温差发电已有诸多应用,但长久以来受热电转换效率和较大成本的限制,温差电技术向工业和民用产业的普及受到很大制约。虽然最近几年随着能源与环境危机的日渐突出,以及一批高性能热电转换材料的开发成功,温差电技术的研究又重新成为热点,但突破的希望还是在于转换效率的稳定提高。可以设想一下,在温差电池技术成熟以后,我们的手机、笔记本电脑电池就可以利用身体与外界的温度差发电,而大大延长其使用时间。
塞贝克效应 塞贝克(Seeback)效应,又称作第一热电效应,它是指由于温差而产生的热电现象。
在两种金属A和B组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电流,称为热电流。 塞贝克效应的实质在于两种金属接触时会产生接触电势差,该电势差取决于金属的电子逸出功和有效电子密度这两个基本因素。
半导体的温差电动势较大,可用作温差发电器。 原理
由于不同的金属材料所具有的自由电子密度不同,当两种不同的金属导体接触时,在接触面上就会发生电子扩散。电子的扩散速率与两导体的电子密度有关并和接触区的温度成正比。 设导体A和B的自由电子密度为NA和NB,且有NA>NB,电子扩散的结果使导体A失去电子而带正电,导体B则因获得电子而带负电,在接触面形成电场。这个电场阻碍了电子继续扩散,达到动态平衡时,在接触区形成一个稳定的电位差,即接触电势。  |
|
|