分享

天文基础知识第8章

 成为亨特 2012-08-22

天文基础知识第8章

分享
分类: 知识 2010-02-15 14:20

    

第七章  河外星系

银河系不是宇宙空间独一无二的星系,围绕这个问题,科学家争论了几十年。直到1924年,美国天文学家哈勃才证实银河系以外确实还有别的星系存在,这些星系被叫做“河外星系”。

第一节  什么是河外星系

什么是河外星系?

如果说银河系是一个巨大的“星城”,那么宇宙间是否仅此一个“孤城”呢?不是的。在广袤无垠、浩瀚辽阔的宇宙空间,还有许许多多象我们银河系一样的“星城”,叫做河外星系,简称星系。今天,人们估计河外星系的总数在千亿个以上,它们如同辽阔海洋中星罗棋布的岛屿,故也被称为“宇宙岛”。

河外星系是怎样被发现的?

关于河外星系的发现过程可以追溯到两百多年前。在当时法国天文学家梅西耶 ( Messier Charles ) 为星云编制的星表中,编号为M31的星云在天文学史上有着重要的地位。初冬的夜晚,熟悉星空的人可以在仙女座内用肉眼找到它——一个模糊的斑点,俗称仙女座大星云。从1885年起,人们就在仙女座大星云里陆陆续续地发现了许多新星,从而推断出仙女座星云不是一团通常的、被动地反射光线的尘埃气体云,而一定是由许许多多恒星构成的系统,而且恒星的数目一定极大,这样才有可能在它们中间出现那么多的新星。如果假设这些新星最亮时候的亮度和在银河系中找到的其它新星的亮度是一样的,那么就可以大致推断出仙女座大星云离我们十分遥远,远远超出了我们已知的银河系的范围。但是由于用新星来测定的距离并不很可靠,因此也引起了争议。直到1924年,美国天文学家哈勃用当时世界上最大的2.4米口径的望远镜在仙女座大星云的边缘找到了被称为"量天尺"的造父变星,利用造父变星的光变周期和光度的对应关系才定出仙女座星云的准确距离,证明它确实是在银河系之外,也像银河系一样,是一个巨大、独立的恒星集团。因此,仙女星云应改称为仙女星系。

    

从河外星系的发现,可以反观我们的银河系。它仅仅是一个普通的星系,是千亿星系家族中的一员,是宇宙海洋中的一个小岛,是无限宇宙中很小很小的一部分

第二节  星系分类

河外星系的大小不一,外观和结构也显得多种多样。

在星系世界中,大量的成员与我们的银河系一样,外观呈旋涡结构,其核心部分表现为球形隆起(称为核球),核球外则为薄薄的盘状结构,从星系盘的中央向外缠卷有数条长长的旋臂,这就是所谓的旋涡星系。

也有许多星系呈现椭圆形或正圆形,没有旋涡结构,称为椭圆星系,它们中有许多是步入垂暮之年的“老龄”星系。一般来说,在椭圆星系内不再有新的恒星诞生。

 

那些介于旋涡星系和椭圆星系之间的星系,有明亮的核球和扁盘,但没有旋臂,形似透镜,称为透镜星系。

与之相反,还有一类星系既没有旋涡结构,形状也不对称,无从辨认其核心,有的甚至好像碎裂成几部分,称之为不规则星系,在其内部仍有恒星在不断形成之中。

河外星系常用它们所在的星座命名;另外,人们也习惯用它们在一种星表中的序号命名。如《梅西耶星表》和《星云星团新总表》:前者用M表示;后者用NGC表示,它是该表名的英文缩写。这些星系在宇宙中就像无边大海中的一些小岛一样,所以早期也有人把星系称为宇宙岛。

第三节  类星体

类星体是一种新型的银河系以外的天体,它们的发现被誉为20世纪60年代天文学的四大发现之一。迄今为止,已发现了数千个类星体。

发现简史

20世纪50年代,天文学家用射电望远镜进行观测时,发现宇宙中存在着大量的射电源,即发出很强的无线电波的天体。但是,用光学望远镜观测时,有不少射电源却找不到相对应的光学可见天体。1960年,美国天文学家马修斯和桑德奇利用口径5米的巨型望远镜,发现一个编号为“3C48”的射电源对应于一颗16等的暗星,其紫外辐射很强,光谱中有一些“莫名其妙”的发射线。两年后,在澳大利亚有人发现另一射电源"3C273"也对应于一颗暗星。1963年,旅美荷兰天文学家施密特拍摄了这颗恒星状天体的光谱,发现其中有4条谱线相互之间的关系很像是氢元素光谱中的4条谱线。这一发现启发了马修斯等人,他们重新研究了“3C48”的光谱,证实那些“莫名其妙”的谱线原来也都是由熟悉的元素产生的,只是这一天体具有0.367的红移量。人们经过分析研究,判定它们不是银河系内的恒星,而是河外天体。

对于这种类似恒星而并非恒星的天体,人们称它们为“类星射电源”。以后,通过光学观测又发现了一些在照相底片上具有类似恒星的点状像,在它们的光谱中,发射线也有很大红移,但不发出射电波,称之为“蓝星体”。蓝星体与类星射电源统称为“类星体”。类星体的发现进一步证明了宇宙间物质的多样性,为研究银河系外天体的形成和演化规律提供了新的观测对象。根据它们在照相底片上呈现出类似恒星的点光源像,天文学家推算其尺度大小不到1光年,或只及银河系大小的万分之一,甚至更小。

物理特征与能源之迷

类星体的显著特点是具有很大的红移,即它以飞快的速度在远离我们而去。类星体距离我们很遥远,大约在几十亿光年以外,甚至更远,但看上去光学亮度却不弱,可见光区的辐射功率是普通星系的成百上千倍,而射电辐射功率竞比普通星系大上100万倍,实在是令人难以置信。

一部分天文学家认为,类星体可能并不位于由其红移值推算出的遥远距离处,而是在银河系附近。还有的人怀疑它的红移是否满足业己确立多年的哈勃定律。总而言之,对类星体的研究已构成了对近代物理学的挑战,而问题的解决,有可能使我们对自然规律的认识向前跨一大步。

第四节  星系群和星系团

有趣的是,由于万有引力的影响,巨大的星系往往会聚集在一起,成群出现,构成星系群或星系团。而且,星系的这种“群居”习惯比恒星更甚。绝大部分星系(至少85%以上)都是出现在星系团中的。当然,这样的“部落”大小不一,包含的星系个数相差极为悬殊。小的只有十几个或几十个,也称为星系群,比如我们银河系所在的本星系群。多的可以有几千个,甚至上万个成员星系,比如后发星系团。像这样的大“部落”一般都有一个或几个“首领”——巨椭圆星系,它位于团中央,四周聚集着它的“亲信”——椭圆星系或透镜星系,而旋涡星系和不规则星系则散布在更加外围的区域。通常,这些星系“部 落”在空间分布上也会三五成群,形成“群落”,这就是所谓的超星系团了。

银河系便属于一个以它为中心的星系群,称本星系群,它包括仙女星系、麦哲伦星云和三角星系等约40个星系。星系团还可构成更高一级的成团结构--超星系团。本星系群即是以室女星系团为中心的包括50个左右星系团和星系群组成的本超星系团的一个成员。

星系团(或超星系团)就是星系的集团吗?这话当然也对,但是星系团中的成分还远远不止这些。天文学家通过X射线卫星的观测(由于大气层的吸收,天体的X射线辐射在地面上一般是探测不到的)发现,星系团中还聚集了大量的高温气体,也就是所谓的星系际 介质。这些气体的质量相当于(甚至超过了)星系团中所有星系质量的总和。它们发出的X射线是宇宙中主要的弥漫X射线源。

光学和X射线的观测使我们了解了星系团的许多性质,其中有一个现象非常奇怪。天文学家通过对团内星系运动状态和气体温度的分析,可以用力学的方法测定整个星系团的质量(用这种方法测得的质量也叫位力质量)。结果发现,星系团的位力质量比团中的星系和星系际气体的质量总和还要大得多,多达5~10倍。这些质量到底来源于什么物质呢?因为它们除了引力效应之外,没有其它任何信息可以被我们直接探测到,天文学上称之为暗物质。暗物质的构成至今还是一个谜。

现在我们知道了,星系团是星系、气体和大量的暗物质由于引力作用而聚集在一起的更加庞大的天体系统。至于它们神秘的起源与演化过程、以及它们又是如何集结在一起组成超星系团的,则是宇宙学研究中最基本的问题之一。

 

第八章  宇宙和宇宙学

面对浩渺无际的苍穹,关于宇宙的创生和演化,我们的先哲百思不得其解,于是多少 奇妙的神话应运而生。宇宙之谜的探索从神话王国迈向科学之邦的道路是漫长而曲折的,可说是步履维艰,跼跼而行。

第一节  宇宙及其组成和结构

“宇宙是有限的还是无限的?有没有中心有没有边?有没有生老病死有没有年龄?”这些恐怕是自从有人类的活动以来一直被关心的问题。为了有一个更清楚的答案,让我们先来看看它的组成和结构吧。宇宙中的天体绚丽多彩,表现出了极高的层次性。

(1)行星

我们居住的地球是太阳系的一颗大行星。太阳系一共有九颗大行星:水星、金星、地球、火星、木星、土星、天王星、海王星、冥王星。除了大行星以外,还有60多颗卫星、为数众多的小行星、难以计数的彗星和流星体等。他们都是离我们地球较近的,是人们了解的较多的天体。那么,除了这些以外,茫茫宇宙空间还有一些什么呢?

(2)恒星和星云

晴夜,我们用肉眼可以看到许多闪闪发光的星星,他们绝大多数是恒星,恒星就是象太阳一样本身能发光发热的星球。我们银河系内就有1000多亿颗恒星。恒星常常爱好“群居”,有许多是“成双成对”地紧密靠在一起的,按照一定的规律互相绕转着,这称为双星。还有一些是3颗、4颗或更多颗恒星聚在一起,称为聚星。如果是十颗以上,甚至成千上万颗星聚在一起,形成一团星,这就是星团。银河系里就发现1000多个这样的星团。

在恒星世界中还有一些亮度会发生变化的星――变星。它们有的变化很有规律,有的没有什么规律。现在已发现了2万多颗变星。有时侯天空中会突然出现一颗很亮的星,在两三天内会突然变亮几万倍甚至几百万倍,我们称它们为新星。还有一种亮度增加得更厉害的恒星,会突然变亮几千万倍甚至几亿倍,这就是超新星。

除了恒星之外,还有一种云雾似的天体,称为星云。星云由极其稀薄的气体和尘埃组成,形状很不规则,如有名的猎户座星云。

在没有恒星又没有星云的广阔的星际空间里,还有些什么呢?是绝对的真空吗?当然不是。那里充满着非常稀薄的星际气体、星际尘埃、宇宙线和极其微弱的星际磁场。随着科学技术的发展,人们必定可以发现越来越多的新天体。

(3)银河系及河外星系

随着测距能力的逐步提高,人们逐渐在越来越大的尺度上对宇宙的结构建立了立体的观念。这里第一个重要的发展,是认识了银河。它包含两重含义,一是了解了银河的形状,二是认识了河外天体的存在。

银河系是太阳所属的一个庞大的恒星集团,约包括1011亿颗恒星。这种恒星集团叫星系。银河系中大部分恒星分布成扁平的盘状。盘的直径为25kpc(千秒差距,1秒差距=3.26光年=3.09亿亿米),厚度约为2kpc。盘的中心有一球状隆起,称为核球。盘的外部由几条旋臂构成。太阳位于其中一条旋臂上,距离银心约7kpc。银盘上下有球状的延展区,其中恒星分布较稀疏,称为银晕。晕的总质量约占整体的10%,直径约为30kpc。我们的太阳,就其光度,质量和位置讲,都只是银河系中一个极普通的成员。

此外重要的是,并非天穹上一切发光体都是银河系的一部分。设想有一个类似银河系的恒星集团,处于500kpc的距离上(银河自身大小为30kpc)。其表观亮度与2pc远处一颗类似太阳的恒星是一样的。因此对天穹上的某个光点,只有测定它的距离,才能区分它是银河系内的恒星还是银河系外的另一个星系。实际上,天穹上的大多数光点是银河系的恒星,但也有相当大量的发光体是与银河系类似的巨大恒星集团,历史上曾被误认为是星云,我们称它们为河外星系,现在已知道存在1000亿个以上的星系,著名的仙女星系、大小麦哲伦星云就是肉眼可见的河外星系。星系的普遍存在,表明它代表宇宙结构中的一个层次,从宇宙演化的角度看,它是比恒星更基本的层次。

星系的质量差别很大。银河系的质量约为1011M⊙(太阳质量单位)。在明亮的星系中,这是典型的大小。质量很小的星系太暗,不易看到。小星系的质量可低达106M⊙。星系的典型尺度为几十千秒差距。若对视星等在23等以内的星系作统计,星系总数在109以上。

20世纪60年代以来,天文学家还找到一种在银河系以外象恒星一样表现为一个光点的天体,但实际上它的光度和质量又和星系一样,我们叫它类星体,现在已发现了数千个这种天体。

(4)星系团

当我们把观测的尺度再放大,宇宙可看成由大量星系构成的"介质",而恒星只是星系内部细致结构的表现。这样,为了了解宇宙结构,需关心星系在空间的分布规律。

星系的空间分布不是无规律的,它也有成团现象。上千个以上的星系构成的大集团叫星系团。大约只有10%星系属于这种大星系团。大部分星系只结成十几、几十或上百个成员的小团。可以肯定的是,星系团代表了宇宙结构中比星系更大的一个新层次。这层次的尺度大小为百万秒差距,平均质量是星系平均质量的100倍。

(5) 大尺度结构

今天人们把10Mpc以上的结构称为宇宙的大尺度结构(目前观测到的宇宙的大小是104Mpc)。至今大尺度上的观测事实远不是十分明确的。有趣的是,有迹象表明,星系在大尺度上的分布呈泡沫状。即有许多看不到星系的"空洞"区,而星系聚集在空洞的壁上,呈纤维状或片状结构。这一层次的结构叫超星系团。它的典型尺度为几十兆秒差距。

从演化理论来考虑,尺度大到一定程度,应不再有结构存在。这是否符合事实,以及这尺度多大,都是十分重要,并需要有大尺度观测来回答的问题。现今对宇宙在50Mpc以上是否还有显著的结构现象存在,正是人们热烈争论中的焦点。

总之,若把星系看成宇宙物质的基本单元,那么星系的分布状况就是宇宙结构的表现。现在看来,直至50Mpc的尺度为止,星系的分布呈现有层次的结构。这就是我们对宇宙面貌的基本认识。

第二节  什么是宇宙学

(1).宇宙学-从整体角度探讨宇宙结构和演化的天文学分支学科

(2).现代宇宙学的诞生

中国古代的宇宙观

盖天说(周初):地是平坦的,天如伞一样覆盖大地。

浑天说(战国):天地有蛋形结构,地在中心,天在地周围。

宣夜说(战国):天无限而空虚,星辰悬浮空虚之中。

17世纪 牛顿开创用力学方法研究宇宙学的途径,建立经典宇宙学。

1917年 爱因斯坦根据广义相对论建立了一个“静止、有限、无界”的宇宙模型,引进宇宙学原理、弯曲时空等概念,从而开创了现代宇宙学研究的时代。1922年 苏联数学家弗里德曼探讨非静态宇宙及宇宙膨胀的可能性。

1927年比利时主教、天文学家勒梅特提出均匀各向同性膨胀宇宙学模型。

1932年 勒梅特提出“原始原子”爆炸形成宇宙的概念。

1948年美国天文学家伽莫夫发展勒梅特思想,奠定大爆炸宇宙论的基础。

第三节  大爆炸宇宙论

宇宙并非永恒存在而是从虚无创生的思想在西方文化中可以说是根深蒂固。虽然希腊哲学家曾经考虑过永恒宇宙的可能性,但是,所有西方主要的宗教一直坚持认为宇宙是上帝在过去某个特定时刻创造的。

象历史学家一样,宇宙学家意识到开启未来的钥匙在于过去。

早在1929年,埃德温·哈勃作出了一个具有里程碑意义的发现,即不管你往哪个方向看,远处的星系正急速地远离我们而去。换言之,宇宙正在不断膨胀。这意味着,在早先星体相互之间更加靠近。事实上,似乎在大约100亿至200亿年之前的某一时刻,它们刚好在同一地方,所以哈勃的发现暗示存在一个叫做大爆炸的时刻,当时宇宙无限紧密。

1950年前后,伽莫夫第一个建立了热大爆炸的观念。这个创生宇宙的大爆炸不是习见于地球上发生在一个确定的点,然后向四周的空气传播开去的那种爆炸,而是一种在各处同时发生,从一开时就充满整个空间的那种爆炸,爆炸中每一个粒子都离开其它每一个粒子飞奔。事实上应该理解为空间的急剧膨胀。“整个空间”可以指的是整个无限的宇宙,或者指的是一个就象球面一样能弯曲地回到原来位置的有限宇宙。

根据大爆炸宇宙论,甚早期的宇宙是一大片由微观粒子构成的均匀气体,温度极高,密度极大,且以很大的速率膨胀着。这些气体在热平衡下有均匀的温度。这统一的温度是当时宇宙状态的重要标志,因而称宇宙温度。气体的绝热膨胀将使温度降低,使得原子核、原子乃至恒星系统得以相继出现。

从1948年伽莫夫建立热大爆炸的观念以来,通过几十年的努力,宇宙学家们为我们勾画出这样一部宇宙历史:

大爆炸开始时

150-200亿年前,极小体积,极高密度,极高温度。

 

大爆炸后10-43秒

宇宙从量子背景出现。

 

大爆炸后10-35秒

同一场分解为强力、电弱力和引力。

 

大爆炸后10-5秒

10万亿度,质子和中子形成。

 

大爆炸后0.01秒

1000亿度,光子、电子、中微子为主,质子中子仅占10亿分之一,热平衡态,体系急剧膨胀,温度和密度不断下降。

 

大爆炸后0.1秒后

300亿度,中子质子比从1.0下降到0.61。

 

大爆炸后1秒后

100亿度,中微子向外逃逸,正负电子湮没反应出现,核力尚不足束缚中子和质子。

 

大爆炸后13.8秒后

30亿度,氘、氦类稳定原子核(化学元素)形成。

大爆炸后35分钟后

3亿度,核过程停止,尚不能形成中性原子。

大爆炸后30万年后

3000度,化学结合作用使中性原子形成,宇宙主要成分为气态物质,并逐步在自引力作用下凝聚成密度较高的气体云块,直至恒星和恒星系统。

大爆炸理论模型得到若干重要观测事实的支持:

(1)星系距离越远退行速度越大

大爆炸理论的科学性令人不得不信服。最直接的证据来自对遥远星系光线特征的研究。20年代,天文学家埃德温·哈勃(Edwin Hubble)研究了维斯托·斯里弗(Vesto Slipher)所作的观测。他注意到,远星系的颜色比近星系的要稍红些。哈勃仔细测量了这种红化,并作了一张图。他发现,这种红化是系统性的,星系离我们越远,它就显得越红。

光的颜色与它的波长有关。在白光光谱中蓝光位于短波端,红光位于长波端。遥远星系的红化意味着它们的光波波长已稍微变长了。在仔细测定许多星系光谱中特征谱线的位置后,哈勃证实了这个效应。他认为,光波变长是由于宇宙正在膨胀的结果。哈勃的这个重大发现奠定了现代宇宙学的基础。

膨胀中宇宙的性质使许多人困惑不解。从地球的角度来看,好象遥远的星系都正飞快地远离我们而去。但是,这并不意味着地球就是宇宙的中心。平均而言,宇宙不同地方的膨胀图像都是相同的。可以说每一点都是中心,又没有一点是中心。我们最好把它想象成星系间的空间在伸长或膨胀,而不是星系在空间中运动。这一点与我们日常生活中见到的源于一点的爆炸不同。

空间可以伸长这一事实看上去似乎离奇古怪,不过这却是1915年爱因斯坦广义相对论发表以来科学家们早就熟知的概念。广义相对论认为,引力实际上是空间(严格地说是时空)弯曲或变形的一种表现。从某种意义上来说空间是有弹性的,可以按某种方式弯曲或伸长,具体情况取决于物质的排列。这个思想已为观测所充分证实。

膨胀空间的基本概念可通过一项简单的模拟来加以理解。想象在一条松紧带上缝有一排钮扣。现在假定从松紧带的两端把它拉长,结果所有的钮扣都彼此远离。不论我们选择从哪个钮扣来看,它邻侧的钮扣似乎都在远离,而且这种膨胀是处处相同的,不存在特殊的中心。当然,我们在画这排钮扣时,它有一个中心钮扣,但这与系统的膨胀方式毫不相干。只要把这条带钮扣的松紧带无限加长,或环成一个圆圈,这个中心便不再存在了。

从任意一个钮扣来看,离它最近的钮扣以某种速度退行,再下一个钮扣则以两倍数度退行,依此类推。在你看来,钮扣离得越远,它退行得越快。因此这种膨胀意味着退行速度与距离成正比-这是一个极为重要的关系。借助这个图像,我们现在就可想象出光波是如何在膨胀空间中或星系间传播的。当空间伸长时,光波波长也跟着变长,这就解释了宇宙学红移现象。哈勃发现,红移量与距离成正比,同这个简单的图像模拟结果完全一致。

(2)3K宇宙微波背景辐射(1978年诺贝尔物理奖)

早在四十年代末,大爆炸宇宙论的鼻祖伽莫夫认为,我们的宇宙正沐浴在早期高温宇宙的残余辐射中,其温度约为6K。正如一个火炉虽然不再有火了,还可以冒一点热气。

1964年,美国贝尔电话公司年轻的工程师-彭齐亚斯和威尔逊,在调试他们那巨大的喇叭形天线时,出乎意料地接收到一种无线电干扰噪声,各个方向上信号的强度都一样,而且历时数月而无边化。

难道是仪器本身有毛病吗?或者是栖息在天线上的鸽子引起的?他们把天线拆开重新组装,依然接收到那种无法解释的噪声。这种噪声的波长在微波波段,对应于有效温度为3.5K的黑体辐射出的电磁波(它的谱与达到某种热平衡态的熔炉内的发光情况精确相符,这种辐射就是物理学家所熟知的“黑体辐射”)。他们分析后认为,这种噪声肯定不是来自人造卫星,也不可能来自太阳、银河系或某个河外星系射电源,因为在转动天线时,噪声强度始终不变。

后来,经过进一步测量和计算。得出辐射温度是2.7K,一般称之为3K宇宙微波背景辐射。这一发现,使许多从事大爆炸宇宙论研究的科学家们获得了极大的鼓舞。因为彭齐亚斯和威尔逊等人的观测竟与理论预言的温度如此接近,正是对宇宙大爆炸论的一个非常有力的支持!这是继1929年哈勃发现星系谱线红移后的又一个重大的天文发现。

宇宙微波背景辐射的发现,为观测宇宙开辟了一个新领域,也为各种宇宙模型提供了一个新的观测约束,它因此被列为20世纪60年代天文学四大发现之一。彭齐亚斯和威尔逊于1978年获得了诺贝尔物理学奖。瑞典科学院在颁奖决定中指出:这一发现,使我们能够获得很久以前宇宙创生时期所发生的宇宙过程的信息。

(3)宇宙氦丰度

最后还有一个证实炽热高密度宇宙起源理论的证据。只要知道今天热辐射的温度,由热大爆炸理论很容易计算出宇宙诞生后约1秒时各处的温度约为100亿度,这对现有的原子核的合成来说也是太高了。那时物质必定被撕裂成最基本的成分,形成一锅基本粒子汤,诸如质子、中子和电子。但是,随着这锅汤变冷,核反应就可能出现了。特别是,中子和质子就很容易成对聚合在一起。接下来,这些粒子相互碰撞,使质子和核能够借助电引力捕捉到周围运动的电子,这样便形成了氢原子或氦原子。

第四节  宇宙可能的结局

宇宙膨胀过程是引力与膨胀初速度之争,谁胜谁负取决于宇宙物质密度。

如果宇宙物质密度£某一临界密度(根据现有的对膨胀速率的观测,临界密度约为5×10-30克/厘米),将没有足够的引力阻止膨胀,宇宙膨胀永无止境,这一情形下,我们称宇宙的膨胀是开放的(开宇宙);如果宇宙物质密度>临界密度,巨大的引力会使得膨胀最终停止并接下来收缩,在这一情形下称宇宙的膨胀是封闭的(闭宇宙)。

这看起来就象我们按照牛顿理论发射飞行器一样,如果给的初速度足够大,飞行器将摆脱地球的引力成为星际飞船,而如果初速度不够,飞行器会最终掉下来。但在讨论宇宙的膨胀时有一个重要的差异。按照广义相对论,封闭式膨胀的宇宙在质量上和尺度上必定是有限的(宇宙空间是正曲率的),而开放式膨胀的宇宙在质量上和尺度上必定是无限的(宇宙空间是零曲率或负曲率的)。

因此,讨论宇宙可能的演化结局与讨论宇宙的有限或无限是完全等价的!

宇宙到底是有限的或无限的?这是个诗人爱遐想,哲学家爱沉思的问题。有些人认为宇宙的无限性是先验的真理,有限宇宙的观念不能为常识所接受。持这种观点者对有限宇宙提出的非议经常是:“宇宙的边缘在哪里?”“边缘之外又是什么?”等等。这是因为他们的困惑来源于错误地用平坦空间的观念来思索一个弯曲的空间。当他们能改正过来,习惯于用弯曲空间的观念来考察弯曲空间,那么他们所有莫解的疑问都会自动消失。事实上,宇宙是有限还是无限的实实在在是一个物理问题。有许多可实测的量,能对此作明确的判断。可惜的是,它们至今被测定得不够准确。但有理由相信,我们在比诗人和哲学家更可靠地逼近真理。

根据广义相对论框架下的宇宙膨胀动力学方程,宇宙学家发展了三种判断有限还是无限也即推断其演化结局的方法:

a) 以密度为判据
b) 以膨胀的减速参量为判据
c) 以宇宙年龄为判据

由于目前为止还不能在宇宙的两种可能结局间作出判断,我们不妨都看一看:

a) 开宇宙(可能性比较大些)

随着恒星不断从气体中诞生,气体越来越少,直至无法再形成新的恒星。

1014年后,恒星全部失去光辉,宇宙变暗,星系核处黑洞不断变大。

1017-1018年后,只剩下黑洞和一些零星分布的死亡了的恒星。恒星中质子开始变得不稳定。

1024年后,质子开始衰变成光子和各种轻子。

1032年后,衰变过程结束,宇宙中只剩下光子、轻子和大黑洞。

10100年后,黑洞完全蒸发,可称为世界末日。

b) 闭宇宙

膨胀停止的早晚取决于宇宙物质密度的大小。

假设物质密度是临界密度的2倍,这膨胀过程经过约500亿年后停止,宇宙半径比现在大一倍。

一旦自引力占上风,宇宙开始收缩,收缩过程几乎正好是膨胀过程的反演,1000亿年后重新回复到大爆炸发生时的极高密度和极高温度状态。且收缩过程越来越块,最后称为“大暴缩”。

闭宇宙的结局似乎比开宇宙差得多,但我们不必杞人忧天。

到这里为止,本文开头提出的三个问题,除了第一个尚需更高精度的观测外,都可作出较明确的回答:宇宙没有中心没有边,不管它是有限的还是无限的;宇宙在时间上有一个开端,有没终结则要看其密度而定。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多