分享

二十世纪最“反直觉”的伟大生物学发现:化学渗透(二)

 美驴在线 2012-11-06

作者:曼斯·雷德

本文发表于豆瓣“科学松鼠会读者花园小组”。

作者关于自己的星星细语:私人教育机构讲师,计算机专业硕士。曾用笔名“小麦”发表几篇科幻小说。

在以前本小组的讨论中,我曾提到“比如你如果不理解所有生物共有的膜渗透能量供应化学原理,你就根本无从评价任何生命起源的理论。

在一篇题为“为什么还有这么多人相信进化论?(http://www.m/group/topic/27216605/)”的帖子中,蒙hongdou网友发信询问,所以这篇文章既是一篇泛泛的科普,也是对这个问题的具体介绍。

前文回顾:《二十世纪最“反直觉”的伟大生物学发现:化学渗透(一)

二.背景

二十世纪最伟大的生物学发现(甚至可以夸大到“科学发现”),公认是沃森和克里克确定生物遗传物质是DNA,以及DNA遗传的生物化学机理。这是一个标准的直觉式发现。沃森在搞清楚DNA的双螺旋结构之后不到两个星期的时间内,就洋洋自得地告诉克里克:“我想我发现了生命的秘密。”这种从结构到功能突破性的跳跃,来自于沃森作为化学家的直觉:分子结构宣示分子功能。双螺旋意味着互为模板以及无限扩充。四个碱基两两配对意味着精确、无损的信息复制。从碱基翻译到氨基酸的简单语法意味着有限、简练的基本指令集。生物遗传的稳定性和精确性在DNA的结构中得到完满解释,从一个生物化学家的视角来看,这个跳跃简单明晰不言自明,足以让沃森和克里克之外的所有人把自己的脑袋拍肿。这个理论的被接受程度,也是犹如星火燎原,一夜之间清洗了所有研究者的大脑,改变了整个生物学研究的版图。

这个发现还运用了一个更深层次、更广泛的科学直觉现象。那就是自然科学的层次结构。

自然科学中的各个领域,并不是齐头并进的,其中一些学科是另一些的天然基础。最主要的一个层次系统是这样的:

物理学→ 化学 → 生物学 → 医学,人类学,心理学 → 社会科学

越前面的越基础,每一种科学也许人类开始认识的时候是独立的,但追究到深处,你总是会发现你需要前面一层的大量知识才能产生认识突破。这样抽象地说也许很难理解,看看例子:

化学元素周期表可以算是独立化学研究的殿堂了。但即使在周期表完成之日,化学家们也很难解释,为什么元素会表现出那样的化学性质,而且周期性地回归到相似的化学性质(比如氧族元素),而且这个周期又在不断变化。单纯在化学的领域折腾,哪个理论也解释不了全部的事实。

二十世纪最鈥湻粗本踱澋奈按笊镅Х⑾郑夯福ǘ)

【图片出处:http://www./】

然而,一旦物理学中的原子结构研究成熟,周期表的问题就犹如庖丁解牛,迎刃而解了。化学性质决定于外层电子配置。元素表周期就是外层电子周期。相似的化学性质就是相似的外层电子配置。基于这种理解上的飞跃,一系列重要的化学问题,比如化学键的本质,化学反应能的研究,纷纷在原子物理的层面得到突破。这种化学问题在物理层面上的理解,我把它叫做“触底”。一个领域的研究一旦触底,透彻的理解和新的发现就指日可待。

再来看一个比较贴近生活的著名例子:

抑郁症,作为心理学中的课题,一直困扰着病患和心理学家。在二十世纪上半段,弗洛伊德主义盛行于西方,抑郁症完全用心理分析方法来解释,童年经历、未实现的欲望、父母责任,一系列五花八门的弗洛伊德式学说和疗法,对这个问题也无可奈何。但是当相关的生物学产生一次“触底”:发现锂制剂及其他药物的神经生物作用后,心理学也同时在生物学上触底了。90年代一桩有名的诉讼案揭开了弗洛伊德主义在西方崩溃的序幕。加利福尼亚一位长期受抑郁症折磨的中年妇女,接受了五年以上的聊天式弗洛伊德疗法,花了几万美元,从未有任何缓解。后来开始服用抗抑郁新药物“百忧解”,四个星期后痊愈。为此她愤而起诉心理医生,最终闹成了全美新闻。现在,百分之九十以上的临床抑郁症案例都用药物治疗,大多有不同程度的缓解。

沃森和克里克的成功,很大程度上也归功于生物学在化学上的触底。因此,在现代分子生物学研究中,一旦研究者逼近纯粹的化学解释,他们总是能闻到成功的气息迫在眉睫。这也就成为了现代生物学者新的直觉。

分子生物学的研究有三个宏观面:物质、信息、能量。物质是共有的基础,而信息和能量是两个不同的研究方向。DNA遗传理论的辉煌成果,把公众的视野完全集中在信息的方向,甚至学界本身也产生了认识上的偏斜。在很多人的心目中,分子生物学就是信息生物学。生物的基因组就是编码库。生命活动就是这些信息互动的总汇。而另一个宏观面:细胞能量学(或者能量生物学),在公众的认识中就非常陌生了。其实二十世纪这个领域中的认识和发现,精妙深刻和激动人心之处并不逊色于信息面。然而其中的坎坷和争执,与信息生物学中的盛世场景就大异其趣了。

二十世纪能量生物学的中心问题就是细胞能量代谢的化学本质。或者说有氧呼吸作用的化学本质和细节。直觉的方向感,引导着生物学家们从两个方向出发,向中央逼近这个课题,来试图完成拼图。就像从两端开始拼成一座大桥。截止到五十年代,大桥好像已经逼近了接龙点。已经取得了如下的成果:


  •  有氧呼吸的本质和有氧燃烧并无不同,都是氧化-还原反应。有氧呼吸的氧化剂是氧气(O2),还原剂可以简化认为是葡萄糖(C6H12O6)。
  • 不像自然失控的普通有氧燃烧,有氧呼吸在细胞中是一步步精确控制的。而且涉及一系列复杂的生物催化剂。
  • 有氧呼吸的场所是细胞中的线粒体。线粒体内膜上镶嵌着一系列的微型催化工厂:细胞色素酶蛋白质综合体。在这些不同的催化工厂,一个个电子被从糖类上剥离,中间产物分子逐步传递,同时释放化学势能,而氧得到这些电子并结合糖中的氢原子,逐步生成水。

  • 所有生物细胞中通用的能量货币是三磷酸腺苷(ATP)。它是一种高能形式的分子。对应的低能形式是ADP。
  • 所有耗能的生命活动都在消耗ATP,把它们转变为ADP(以及失去一个磷酸基团:Pi),并利用转变放出的能量。因此,有氧呼吸的作用就是这些活动的反过程:制造能量,用来把低能的ADP转变为高能的ATP。
  • 制造ATP的场所在ATPase,另一种镶嵌在线粒体内膜上的蛋白质综合体。这些微型催化工厂消耗ADP,释放出ATP。而且,在某些情况下,这些工厂也能反向工作,即消耗ATP制造ADP。


请注意,以上的成果我用空行分成了两组。因为中间还缺乏一个步骤,细胞色素酶和ATPase是不同的蛋白质综合体,它们在线粒体内膜上的分布,物理上是互相隔绝的。而所谓化学反应,在分子层面上是100%需要物理接触的。那么,能量是如何从细胞色素酶传送到ATPase上的呢?这就是所谓接龙点。

前一组是分子生物化学,后一组也是分子生物化学,中间还缺乏一个链条。你的直觉是什么?当然还是分子生物化学。我们需要找到一种媒介分子,从细胞色素酶工厂的氧化还原反应中产生,在ATPase工厂中消耗,携带一个高能状态的化学键。暂且把它叫做媒介分子X。

四五十年代的能量生物学界弥漫着乐观情绪,大厦只差一步就能建成,科学家和研究小组之间展开了寻找X分子的竞赛。然而,足足找了20年,提出的候选分子不下十几种,一个个都被研究和实验否定了。在寻找的过程中,随着对整个过程细节研究越来越深入,一系列看起来很琐碎,但是莫名其妙让人不安的问题冒了出来:

 

我们已经知道了ATP和ADP是能量通用货币的正负两种形式。在化学上,一个不言自明的直觉理解是高能状态不稳定,低能状态稳定,所谓“水往低处流”。如果把纯粹的ATP放在生物体外的溶液中,它们就会很自然地迅速转化成ADP,并释放热能。然而在生物细胞中,ATP和ADP的比例通常都是非常高能化的,ATP占了90%以上。这种全局的高能状态,需要持续的能量供应来维持。细胞中有氧呼吸的强度(用糖和氧的消耗速度来测量)变化很大,有时候相当衰弱。然而不管有氧呼吸的强度怎样,ATP的比例都维持在稳定的高位。这就像一块巨石悬在墙头,不管你用不用力撑着,它偏不掉下来。在化学的视野中,这是不可理喻的场景,然而又找不到是什么东西在支撑着它。

ATP的产出和葡萄糖的消耗,这个反应方程式,在实际测量中居然配不平。学过中学化学的,都应该知道什么叫配平反应式。几分子的A和几分子的B反应,生成几分子的C。一旦配平,比例就是固定的。这是“数学”,所有科学的基础真理。然而测量表明,一分子的葡萄糖被完全氧化,生产28-38个ATP分子,之间任何数字都有可能,但大多数时候接近下限。在化学反应方程式中,什么叫28-38?配平需要的是整数!这又是不可理喻的反化学场景。测量实验反反复复地做,结果一直都是那样。

化学反应的能量和物质是守恒的,也就是说,反应式链条确立之后,前面的反应发生,后面的反应就该受驱动同时发生。前面氧化消耗葡萄糖,后面就该驱动生成ATP。这在化学术语中叫做coupling,或者偶联。消耗葡萄糖的过程和生成ATP的过程是偶联的(先忽略前面提到的配不平问题)。然而一些特殊的化学物质,可能扰乱偶联的稳定,这叫做“解偶”(uncoupling)。有氧呼吸的解偶是普遍存在的,在有些物质参与时,氧化葡萄糖的过程完全正常进行,ATP生产完全停顿。就像皮带轮系统断掉了皮带,前面的轮子空转,后面的不理睬。在化学上,这是可以接受的。因为解偶物质总是有一种化学性质,能够扰乱连续反应中的一个环节(比如说,如果有X媒介分子,某种解耦物质倾向于和X分子结合使其失去浓度,破坏了能量传递,当然就能解偶。)但是现在的问题在于,实验证明能解偶有氧呼吸的物质,如水杨酸(阿司匹林),白喉霉素,摇头丸,化学组成和化学性质五花八门,简直找不到一个共同点。在寻找X分子失败的过程中,生物学家们对解偶物质寄予厚望,因为一旦发现了解偶物质的共同化学性质,多半就能推导出X分子到底是什么--因为这是大桥上唯一不为人知的部分。然而现实是,解偶物质发现得越多,就越找不到化学共同点。

天才的美国物理学家、科普作家费因曼,曾经对物理学中的某些困境有一个令人发笑的描述:“如果你还没有彻底被搞昏,只能证明你不懂这个领域。”在五十年代末,对有氧呼吸的研究和X分子的身份之谜,就完全是这样的场景。越是研究得透彻,理论和现实就越是自相矛盾,不可理喻。每一种假说都有不可治愈的痛脚,每位前沿研究者都不知道到底是哪里出了问题。乐观已经被混乱取代。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多