Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。 Key Words:有监督学习与无监督学习,分类、回归,密度估计、聚类,深度学习,Sparse DBN, 1. 有监督学习和无监督学习 给定一组数据(input,target)为Z=(X,Y)。 有监督学习:最常见的是regression & classification。 regression:Y是实数vector。回归问题,就是拟合(X,Y)的一条曲线,使得下式cost function L最小。 classification:Y是一个finite number,可以看做类标号。分类问题需要首先给定有label的数据训练分类器,故属于有监督学习过程。分类问题中,cost function L(X,Y)是X属于类Y的概率的负对数。
无监督学习:无监督学习的目的是学习一个function f,使它可以描述给定数据的位置分布P(Z)。 包括两种:density estimation & clustering. density estimation就是密度估计,估计该数据在任意位置的分布密度 clustering就是聚类,将Z聚集几类(如K-Means),或者给出一个样本属于每一类的概率。由于不需要事先根据训练数据去train聚类器,故属于无监督学习。 PCA和很多deep learning算法都属于无监督学习。 Depth 概念:depth: the length of the longest path from an input to an output. Deep Architecture 的三个特点:深度不足会出现问题;人脑具有一个深度结构(每深入一层进行一次abstraction,由lower-layer的features描述而成的feature构成,就是上篇中提到的feature hierarchy问题,而且该hierarchy是一个稀疏矩阵);认知过程逐层进行,逐步抽象 3篇文章介绍Deep Belief Networks,作为DBN的breakthrough 3.Deep Learning Algorithm 的核心思想: 把learning hierarchy 看做一个network,则 ①无监督学习用于每一层网络的pre-train; ②每次用无监督学习只训练一层,将其训练结果作为其higher一层的输入; ③用监督学习去调整所有层 这三个点是Deep Learning Algorithm的精髓,我在上一篇文章中也有讲到,其中第三部分:Learning Features Hierachy & Sparse DBN就讲了如何运用Sparse DBN进行feature学习。 4. Deep Learning 经典阅读材料:
5. Deep Learning工具—— Theano Theano是deep learning的Python库,要求首先熟悉Python语言和numpy,建议读者先看Theano basic tutorial,然后按照Getting Started 下载相关数据并用gradient descent的方法进行学习。 学习了Theano的基本方法后,可以练习写以下几个算法: 有监督学习:
无监督学习:
最后呢,推荐给大家基本ML的书籍:
|
|
来自: 文清阳 > 《Deep Learning》