2)存贮量大。1立方米的DNA溶液,可以存贮1万亿亿的二进制数据 。1立方厘米空间的DNA可储存的资料量超过1兆片CD容量。
3)运算快。其运算速度可以达到每秒10亿次,十几个小时的DNA计算,相当于所有电脑问世以来的总运算量。
4)耗能低。DNA计算机的能耗非常低,仅相当于普通电脑的10亿分之一。如果放置在活体细胞内,能耗还会更低。
5)并行性。普通电脑采用的都是以顺序执行指令的方式运算,由于DNA独特的数据结构,数以亿计的DNA计算机可以同时从不同角度处理一个问题,工作一次可以进行10亿次运算,即并行的方式工作,大大提高了效率。
此外,DNA计算机能够使科学观察与化学反应同步,节省大笔的科研经费。
从最早的帕斯卡尔齿轮机 到今天最先进的电子计算机,其计算方式都是一种物理性质的符号变换,具体是由“加”和“减”这种基本动作构成的。然而,目前的DNA计算则有了本质性的变化。计算不再是一种物理性质的符号变换,而是一种化学性质的符号变换,即不再是物理性质的“加”、“减”操作而是化学性质的切割和粘贴、插入和删除。这种计算方式的变革是前所未有的,具有划时代的意义[1] 。
2011年10月,英国,用细菌研制出生物逻辑门
这是有史以来最先进的“生物电路”。 这种生物逻辑门是模块化的,它们可以被安装在一起,从而为未来建立更复杂的生物处理器铺平了道路。
2011年9月,美国,用生物计算机摧毁癌细胞
这种生物计算机能够进入人类细胞,通过对5种肿瘤特异性分子进行逻辑组合分析识别出特异癌细胞,从而触发癌细胞的毁灭过程。这一成果为开发出特异的抗癌治疗奠定基础。
2011年7月,以色列,用生物计算机探测多种不同类型分子
这种生物计算机能同时自动探测多种不同类型的分子,可用于诊断疾病、控制药物释放,实现诊断治疗一体化。
2009年,美国,用大肠杆菌研制成细菌计算机
这种细菌计算机可解决复杂数学问题,且速度远快于任何以硅基础的计算机。
2007年,美国,用DNA计算机实现RNA干扰机制
这种DNA计算机可进行基本逻辑工作,能够应用于人工培养的肾细胞。科学家将源于其他物种的单siRNA分子导入细胞,该DNA计算机能使编译某种荧光蛋白 的目标基因关闭。
2006年,美国,用DNA计算机快速准确诊断禽流感病毒
这种DNA计算机能够更快、更准确地检测西尼罗河病毒 和禽流感 病毒,以及其他疾病。
2005年,以色列,用DNA计算机运行10亿种由DNA软件分子设计的程序
这种DNA计算机采用了新的溶液处理工艺等技术,能够运行10亿种用DNA软件分子设计的程序,有潜力觉察到细胞中与多种癌症有关的异常信使RNA,为癌症诊断提供信息。
2004年,中国,第一台DNA计算机在上海交大问世
这种DNA计算机是在以色列魏茨曼研究所的DNA计算机的基础上进行改进后完成,其中包括用双色荧光标记对输入与输出分子进行同时检测,用测序仪对自动运行过程进行实时监测,用磁珠表面反应法固化反应提高可控性操作技术等,可在一定程度上完成模拟电子计算机处理0,1信号的功能。
2003年,美国,世界首台可玩游戏的互动式DNA计算机问世
这种DNA计算机主要以生化酶为计算基础来运算简单游戏。
2000年,以色列,世界上第一台DNA计算机问世
这是世界上第一台成型的DNA计算机,可以解决一些相对复杂的运算问题。在当时它没有什么实际用途,但它代表着DNA计算机已经迈出科幻时代,并成为现实中一种初露端倪的技术。
1994年,美国,DNA计算机概念首次提出
科学家用一支装有特殊DNA的试管,解决了著名的“推销员问题”:有n个城市,一个推销员要从其中某一个城市出发,唯一走遍所有城市,再回到他出发的城市,求最短的路线。这个问题在当时即使用最快的半导体来推算,也需要至少两年以上的时间,但是科学家用DNA计算只花了7天时间,令人叹为观止,从而开辟了DNA计算机研究的新纪元[2][3] 。
未来的DNA计算机在研究逻辑、破译密码、基因编程 、疑难病症防治以及航空航天等领域应用的独特优势, 现在电子计算机是望尘莫及,应用前景十分乐观。比如,DNA计算机的出现,使在人体内、在细胞内运行的计算机研制成为可能,它能够充当监控装置,发现潜在的致病变化,还可以在人体内合成所需的药物,治疗癌症 、心脏病 、动脉硬化 等各种疑难病症,甚至在恢复盲人 视觉方面,也将大显身手。
完全可以想象,一旦DNA计算技术全面成熟,那么真正的“人机合一”就会实现。因为大脑本身就是一台自然的DNA计算机,只要有一个接口,DNA计算机通过接口可以直接接受人脑的指挥,成为人脑的外延或扩充部分,而且它以从人体细胞 吸收营养的方式来补充能量,不用外界的能量供应。像科幻小说中向大脑植入以DNA为基础的人造智能芯片,未来就像现象接种疫苗 一样简单。无疑,DNA计算机的出现将给人类文明带来一个质的飞跃,给整个世界带来巨大的变化,有着无限美好的应用前景。
不过,由于受目前生物技术水平的限制,DNA计算过程中,前期DNA分子链 的创造和后期DNA分子链的挑选,要耗费相当的工作量。比如,阿德勒曼 的“试管电脑 ”在几秒钟内就得出结果,但是他却花掉数周的时间去挑选正确的结果。还有,如果实验中城市数目增加到200个,那么计算所需的DNA重量将会超过地球的重量。而且数以亿计的DNA分子非常复杂,在反应过程中很容易发生变质和损伤,甚至试管壁吸附残留都可能发生致命错误。因此,DNA计算机真正进入现实生活尚需时日。[3]