分享

《格式塔心理学原理·11》作 者:库尔特·考夫卡

 西纳 2013-04-05
也有一些力,这一结论是我们从我们的实验中直接得出的。然而,这一点是基本的;我们在第二章的最后一节中系统阐述了心理学的任务,指出了我们将会采取什么步骤以便发展一种心理学体系。现在,我们所关心的一点便是这第一步的第一部分,也即发现使我们的环境场组织成分离的物体的力。

    这些力的实验证明

    我们已经发现了某些力,现在,我们将补充一些实验证据,以证明组织的物体或单位实际上与场的其余部分在动力上是有所区别的,每一种单位都有其特定的力的分布。我们的第一批例子取自所谓的对比场(field
  of Contrast)。众所周知,一个小小的灰色场,当它被一个黑色场包围时,比之当它被一个白色场包围时,显得较白一些。这一现象本身将是对我们观点的一种证明,如果以下情况得到证明,也即作为单位而非仅仅作为“黑白事件”之和的黑色场和白色场对这一效应负责,那么,这一现象本身就可证明我们的观点了。这是因为,在那个例子中,处于两种不同环境中的灰色场的不同外表会证明以下的现象,即较大的黑色场和较大的白色场将一些力作用于其中的灰色场,以便改变它们的白色。然而,根据传统上人们所接受的对比理论「这些对比理论在海林的理论(Hering’s
  theory)中可找到其起源」,对比的效应与场的单位或形状没有任何关系,而仅仅与内部场外面的明度的量和接近性有关。

    传统的对比理论

    按照这一理论,一种白色过程在其整个环境中引起了黑色过程,这种影响的强度依据一种尚不知晓的距离函数而降低。在这一理论的近代形式中,除了在特定的条件下,并未有黑色产生的类似影响,因为并不存在产生黑色的局部刺激。因此,如果一个灰色的内部场(inlying
  field)在被黑色场包围时,比之该内部场位于具有它自身明度的场内显得较白一些,那么这种情况并不能解释成是黑色背景的白化效应(Whitening
  effect),而是由于“相等的”灰色场的暗化效应(darkening effect),这里“相等的”这个术语意抬“具有相等的白色”。根据这一观点,两个相等的兴奋将会彼此弱化,每一种兴奋在它的相邻的场内引发黑色过程,从而减少了由射入的光线所产生的白色过程的强度。还有一种现象,处于任何背景上面的灰色小块看来要比灰色大块更淡一些,这一事实可由下述原理来解释,该原理在德文中称作“Bin-nen-Kontrast”,译成英文就是“内部对比”(internal
  contrast)。即便我们的灰色场被一个深灰场包围起来,该灰色场仍然会因深灰场而被暗化,因为白色过程(随着光的入射而在周围场中仍会被引起)产生了对比,也即内部场中的黑色过程。这一理论的特征在于,对比是一个累积的(summative)和绝对的(absolute)事件;它有赖于兴奋的数量分布和几何分布,有赖于它们的绝对强度,而单位形成和形状既作为两个场的刺激关系被排斥在外,又作为有效因素被排斥在外。

    我们将在后面说明这个理论的第二方面的错误性,也就是它的绝对性特征(character of
  absoluteness)。此刻,我们必须证明它的累积方面是错误的;因为这种反驳包含了在一个统一的和成形的场部分内运作之力的证据。

    在这样做之前,我必须提请读者注意,从严格的意义上讲,除了明度对比以外还存在色彩对比。在一个较大的红色场内,一个较小的灰色场看上去呈绿色或带有绿色,而在一个绿色场内,一个较小的灰色场则呈红色或带有红色,等等。我还想补充的是,我把正在使用的对比这个术语仅仅作为对已经报道的事实的描述,而并非作为对已经报道的事实的解释。因此,读者在遵循我的论点时,不该将任何理论与“对比”这个术语联结起来,而是判断该论点作为来自事实的结论有何价值。

    反对这个理论的实验证据

际上是威特海默和贝努西图形的结合体。在一个一半是红色一半是绿色的背景上置有一个灰色的圆环。如果我们朴实地注视它,它看上去或多或少呈同质的灰色。现在,我们在红色场和绿色场之间的界线顶端放上一张狭纸条,或者放上一枚针,从而使圆环分成两个半圆。结果,红色场一边的半圆立即会呈现明显的微绿色,而绿色场一边的半圆就会呈现明显的微红色。我们习以将这一实验结果表述如下:由同样的刺激产生的两个分离的图形将看上去彼此不同,在这样的条件下,一个统一的圆形看来仍然是一致的。与该实验有关的理论是什么呢?就刺激方面而言,我们有三个一致的区域处于明确的几何关系之中:也就是一个红色区、一个绿色区和一个灰色区,这三个区域是这样安排的,它使灰色区的一半干扰了红色区,而另一半则干扰了绿色区。根据我们的知识,我们将期望看到三种单位,即一个红色单位、一个绿色单位和一个灰色单位,这种期望在该实验的第一部分得到了满足。接着,我们引进了一种新的异质性,这种异质性把我们的圆环一分为二,成为两个半圆环。于是,发生了某种新的情况;迄今为止无效的情境,也就是位于不同背景中的两个半圆,对于不同的异质进行了干扰,改变了它们自身的颜色性质;换言之,圆环部分与其环境之间刺激的跳跃现在变得有效了。当然,这些刺激的跳跃也存在于实验的第一部分之中,因此,在实验的第二部分中,为两个半圆环提供不同颜色的力肯定也一直存在着。如果整个圆环看起来呈灰色的话,只能是由于这一事实:使圆环结合在一起的聚合力如此之强大,以致于全部或部分地抵御了使该圆环变得异质的其他力的影响。这就把我们引向一个新的组织原理,它是对我们旧原理的转变。新的组织原理认为:场的强有力的统一部分将尽可能像看上去那样一致,也就是说,差不多等于占优势的条件所允许的程度。关于这一观点有许多证据可以提供[富克斯(
Fuchs),1923年;考夫卡,1923年;图多尔·哈特(Tudor.Hart),G.M.海德(G.M.Heider)」。

    让我们回到我们的实验上来:我们仍然用不同的方式来表述,也即得出两种力,一种是使圆环一致的力,另一种是使圆环的两部分看来不同的力。当圆环被看作一个完整的圆环时,第一种力更强些,而只有当第一种力变弱时,其他的力才会占上风,从而引起颜色的改变,以及随之而来的形状的改变;这时,人们看到的是两个图形而不是一个图形。在这一组织过程中,稍微的改变便会带出形状的作用。一个圆环是一个完整的平衡的图形,内部并不清晰。可以作这样的假设:使聚合力变得如此强大的特性,导致清晰力继续不起作用。这样的假设似乎有点道理。如果这是正确的解释,那么我们的实验将会产生不同的结果,假如我们用具有两个清晰细分的8字形图形来代替这个圆环的话。如果把这个新图形置于我们的红色场和绿色场中,以致于两种颜色的界线将图形对称地分开,而在这个界线被引进以前,这两部分本该比圆环的两部分看上去彼此之间更为不同。情况确实如此。确实,人们可以从这些实验中获得属于特定形状的聚合力的测量方法。

    内部场的形状决定了它从环境场呈现的对比颜色的数量,这已为G.M.海德的某些实验所表明(p52)。在三个同样大小的大型蓝色场里,她引入了一个小的灰色图形。在第一个蓝色场上面是一个圆,在第二个蓝色场上面是一个环,而在第三个蓝色场上面则是一个较大的圆周,圆周上排列着12个小圆。这些图形的大小是这样的,灰色的总量在所有三个蓝色场中是一样的。现在,根据累积理论,这三种图形应当在不同程度上看上去带点黄色,最后一个图形的黄色最多,而第一个图形的黄色则较少,因为在最后一个图形中,灰色部分与蓝色部分处于密切的接触之中,每一个小圆都被蓝色完全包围起来了,而在第一个图形中,一个相对来说大块的灰色,比较而言是远离蓝色的。然而,事实与这种解释不符,第一个图形,也就是完整的圆,看来最黄,而最后一个图形,则黄色最少。正是那个具有最大聚合力的图形成为最有色彩的图形,这是一种新的迹象,它表明组织程度与着色之间的密切关系。

    当然,下述事实并不互相矛盾,即在威特海默-贝努西的实验中,紧密聚合的图形是着色最少的,可是,在这里,它却是着色最多的,因为在该实验中,由巨大聚合所实施的一致性必须是中性的一致性。而在海德夫人的实验中,一致性和中性颜色之间没有这类联结。

    这一实验不仅证明了统一和分离的力的现实,而且也证明了形状的现实。小三角形在一种情形里存在于较大的图形内部,而在另一种情形里则存在于较大的图形外部,这究竟是怎么一回事?答案是:因为在图a中,整个大三角形(小三角形是其中的一部分)是一个充分平衡的良好形状(good
  form);单单黑色部分的形状则是较不令人满意的。与此相反的是,在图b中,那个没有小三角形的十字形比之包括小三角形的十字形更是一个良好形状。换言之:组织有赖于最终的形状。在若干几何学上可能的组织中,那个具有最佳形状和最稳定形状的组织实际上将会发生。当然,这不是别的,而是我们的简洁律(law
  of prag-nance)。

    形状的其他一些直接效应

    我们已经阐释了有关形状的第一个直接效应。现在,我们将引用更多的实验证据,以便证明组织过程中明显的直接效应。在威特海默-本纳利的实验中,这种效应发生在稍微复杂一些的条件之下,也就是比我们开始时的条件复杂一些;在这一实验中,不是具有两个同质场,以及两个同质场之间的质的飞跃,而是具有三个这样的场。为了回到更为简单的情形中去,我们将再次讨论油的例子,该例于假定,油在具有相等的特定密度的液体中呈现球状,如果油与该液体不相混和的话。让我们来问下列问题:如果在不同的物质内,某种物质的球状分布是最稳定的,那么,当一个同质场内出现任何一种形状时,为什么我们看不到一个球体,或至少一个圆呢?(我们可以把球体排斥在外,因为我们假设,在我们的实验中,条件是这样的,即把一切颜色过程集中于一个平面上。)但是,为什么我们看不见一个圆呢?答案十分简单,并将引导我们走向一个有关形状现实的新证明中去。一滴油之所以成为球体,是因为周围液体的结构无力去阻止它屈从于它自己表面上的力和它自己内部的力。就周围的液体而言,任何一种形状将与任何一种其他形状一样理想。然而,当我们用白色表面上的一个不规则黑点去刺激我们的眼睛时,视网膜上建立起来的条件(它使整个过程得以启动,并使其继续发展)确实对过程的最终分布的形状产生影响,这种影响在我们上述的油的球体例子中是不存在的。这是因为,刺激不仅决定了产生于白色之中的黑色的量——如果它确实仅此作为的话,那么,我们应当期望看到一个圆,而不管那个点的形状如何——而且还决定了随之而来的分布的十分明确的空间关系。过程分布的动力形式有赖于刺激分布的几何形式。

    两种组织力量:外力和内力

    在我们的心物情形中,我们有两种力,一种力存在于分布本身的过程之中,而且倾向于在这种分布上面印刻最简单的可能形状,还有一种力存在于这种分布和刺激模式之间,它们限制朝着简单化方向发展的应力。我们把后面这种力称作组织的外力(extermal
  forces of organization),而把前面这种力称作组织的内力(internal forces of organization),这里所谓的外部和内部,涉及与我们所见到的形状相一致的整个过程的那个部分。

    如果这个假设正确的话,那么,只要这两种力沿同一方向运作,例如,如果我们的点具有圆形,则我们应该期望十分稳定的组织。与之相反,如果这些力处于强烈的冲突之中,那么,由此产生的组织便很少稳定。我们能否证明这些结论呢?

    以这种区分为基础的实验

    这种证明的一般原理是容易识别的。我们必须展示不规则的图形(这些不规则的图形将产生刚才描述过的冲突之力),并观察其结果。在我们挑选的图形和一般的实验条件中,我们可以追求两个目的,使那些阻止稳定组织的力变得很小,或者使它们变得很大。在第一种情形里,我们期望组织的内力变得足够强大,以便去克服这些外力;而在第二种情形里,我们期望不稳定的终极产物(end-products),也就是说,被见到的图形在我们注视它们时发生改变,或者被见到的图形完全未被清晰地组织。实验程序选择了第一种程序方式,并在同样的特定条件得到满足时予以一些偶然的观察。现在,我们就来讨论这些结果。
  外力是强的

织之力排除了部分的任何一种较大的位错。让我们假设,较小的位错是有可能的。现在,在许多完全不规则的图形中,部分的小型位错不会使它们更加规则起来,因此,没有任何理由说,为什么在这些条件下它们应当发生。但是,这个论点把我们引向一个新的实验:我们把客观图形设计成这种样子,小的位错也可以使图形变得更加规则。当你不带任何批判眼光去看图
13,以便把它看作一个整体时,你便会看到一个图形,虽说它不是一个圆,但是也与一个圆差不了多少。实际上它是一个有12只角的多边形,而非一个完全规则的多边形,因为只有4只中心角恰好是30度,其余的角都略为少于或多于30度。这里,将一些部分沿正确方向稍作位错,便会产生一个更加规则的组织,而且这些位错确实在这里发生了;你们看到了一个规则的图形。

    证明这个同样结果的另一种方式是使我们的斑点十分接近于一个正方形,譬如说,两个底角只有89度,而两个顶角则分别为91度。只要人们对它并不十分仔细地审视,便可将这个图形视作一个正方形。

    像上例表示的内部组织之力的有效性的证明,实际上在我们的生活中每时每刻都发生着。我们被矩形的事物所包围,它们在我们看来都呈矩形。甚至当我们不考虑透视畸变(perspec-tive

异议,事实上,我们到处见到的矩形是由于下述事实,真正的矩形比起稍稍不确切的矩形来是一个组织得较好的图形,将后者变为前者只需很少的位错。

    但是,我们可以用另一种方式来证明在强烈的外力条件下组织的内力。我们可以不让这些内力产生实际的畸变现象,而使它们完整,并以这种方式与外力发生冲突。图14可被视作一个很不规则的形状,但也可视作两个一致的和对称的形状,其中一个形状部分地倚着另一个形状。在后者的情形里,线条好像在所见的形状中被指明,对于这种所见的形状,没有一种刺激的变化与此一致。因此,由整个黑暗区域的同质刺激所产生的统一之力被分离之力所克服,这些分离之力来自形状完整的图形的统一,两个图形中的每一个图形比起一个具有同质着色的不规则图形来应该说是一个更好的形状。如果转换这两个图形的相对位置,以便使它实际上看来不可能是两个图形,这样做还是容易的。当一个图形比我们的图形更简单时,便可做到这一点,或者当其中之一的突出部分不是一个部分图形的独特部分时,也可以做到这一点。
  外力是弱的

画出。图
15显示了这样的系列图形,最后一个图形是实际展示的,其他几个图形是被试连续作画的再现产品。接下来的两个图形,也就是图16和图17的图形,取自格兰尼特(Granit)1921年的一篇文章。格兰尼特使用了与林德曼相似的方法,但是,他并不要求连续作画。图16的第一个图形是原始的展示图形,另一个图形是由一名

形。尽管我们将在后面讨论这些条件下发生的组织过程,但我们仍想在目前的讨论中分析一下这个例子和类似的例子(来自其他研究者的例子),这是因为,根据形状简化的观点,这些例子是与其他例子一致的。图
17显示了一个原始图形和由两名不同的成人画的再现图形。

    在格兰尼特的例子中,图形的简化如同林德曼的例子。林德曼还使用了另外一种方法,以便证明在短时展现的条件下简单形状所具有的更大的稳定性。林德曼的方法是以不同的时间间隔展示一个圆和一个椭圆的各个部分。在这些条件下,椭圆开始变形,譬如说,变成了橡树果实般的形状,然而,圆却一点也未受影响,或者,当展示时间的差异太大时,圆形被分解为两个部分。

    最后,让我们回顾一下在前面描述过的哈特曼的实验。实验中,一个图形展现两次,两次之间有一个短的时间间隔,而且实验中测量到的整个展现时间正好使该图形呈现为一个整体,没有闪烁。业已发现,当所见的形状是两种可能形状中较简单的一种时,在两种不同形状中所见到的一种刺激模式更容易融合起来。根据我们目前的了解,并与我们先前的结论相一致,我们可以作出解释,即较简单的图形中的内部应力比较不简单的图形中的内部应力小,这种减弱了的内部应力促使两个过程融合成一个过程。

    有关减弱强度的实验早在1900年就由亨普斯特德(Hemp-stead)在铁钦纳(Titchener)的实验室中完成了:把一些图形投放到一块适度照明的屏幕上,一个具有可变开口的节光器在幻灯机和屏幕之间转动。通过逐步增加节光器的开口,图形便变得越来越清晰。如果开口开到最小一档,便什么图形也看不见了;当图形首次开始呈现时,与刺激模式相比,它是明显变形的,变得更加简单,更加对称,具有圆角而非尖角,空隙闭合了,甚至连一般的形状所要求的线条在临时填补的刺激中也不复存在。沃尔法特(Wohlfahrt)曾经用过一些图形,开始时把这些图形的尺寸不断缩小,缩小到看不见的程度,然后再把图形逐渐放大,由此,沃尔法特发现了颇为相似的结果;他强调现象的不稳定性,这种现象的不稳定性好似图形的一种直接可观察的特性;它们看来充满了内力,这些内力在图形内部导致实际的颠簸和跳跃。

    所有这些实验充分证实了我们的期望。如果外部的组织之力较弱,那末内部的组织之力便会十分强大,足以产生相当大的位错,结果导致更为稳定的形状。如果这些图形变得更加稳定的话,则这些力甚至可以产生新的物质过程;新的线条可能被增添上去,对此现象,我们将在稍后加以详细研究。

    现在,让我们转向后象的实验。后象发生在刺激被移去以后,而且,在最简单的情形里,可用同质的面去取代后象。这种情况必须由力来加以解释,它们产生自神经系统中原始发生过程的结果。人们可能会想到可逆的化学反应过程,物质已被分解,分解后的产物现在却重新自行结合起来,通过可逆过程形成了原先的物质。无论如何,这些力完全存在于有机体内部,它们的地位不再受外部能量的影响,从而可以更加自由自在地重新安排自身。由歌德(Goethe)描述的一个古老的观察(人人皆可重复的观察)证实了这样的结论:一个正方形的后象将逐渐失去其尖角,并变得越来越圆。

成简单的形状,那么后象要么成为较好的形状,要么若干线条根本不会在后象中出现。第一种情况为一个实验所证实,如图
18所安排的两根平行线那样。如果两根线出现在后象中,那么它们彼此之间的置换便会大大减弱,结果形成一个不完全菱形的两条边。然而,通常情况下,这两条线并不同时出现,而是彼此交替地出现;这就把我们带到了第二种可能性上面,图19的图形是说明这种可能性的更好例子。图19a提供了一个清晰而又完整的后象,而图19b却并非如此。这里,要么是那根最接近于凝视点的线出现了(在我们图中用X作为标记),要么是两条线交替出现,但是,图19b的四条线却与图19a的四条线相一致。

    这些实验证明了形状的影响,从而也证明了组织的内力在整个组织过程中的运作。
  外力减弱至零

    1.盲点实验

    我们眼睛的解剖结构允许我们再跨前一步,并将外力减至绝对的零。在鼻骨一侧离视网膜中央凹大约13度的地方,有一所谓的“盲点”(blind

水平范围大约为
6度,它的最大的垂直范围则略微大一些。甚至在单眼视觉中,我们的现象空间也不出现空洞(hole),这一事实引起生理学家和心理学家的长期兴趣,而且进行了许多实验,以确定在盲点区域能看到什么东西。有关这些实验的理论解释经常受到含蓄假设的妨碍,这是一种恒常性假设(constancy
  hypothesis)的特例,即在一组特定的条件下发生的事情也肯定会在所有条件下发生。如果没有这种假设的话,倒是不难把各种实验数据整理出头绪来的。为了我们的目的,只须回顾一下一个实验便够了,那就是沃克曼(VoIkmann,1855年)和威蒂奇(Wittich,1863年)的实验。把一个十字架形状的东西用下列方式呈现,它的中心落在盲点上,而十字形的两臂则伸至视网膜的敏感区里面。在这些条件下,可以看到完整的十字。当十字形的两臂具有不同的颜色时,十字形的中心便以两臂的任何一种颜色显现,主要显现在水平的两臂颜色中。我们在这里举一个很能说明问题的例子,十字形的蓝色垂直臂穿过红色的水平臂,这里,十字形中心呈现红色,尽管客观上它是蓝色的。如果有人转动该十字形,使蓝色臂呈水平状,那么,十字形中心便也显现蓝色。这种水平臂的优势可以得到过度补偿(over
  compensated),如果有人把垂直臂搞得相对长一点的话。

    那末,这些结果意味着什么?第一个实验表明,心物过程的领域要比受刺激区的领域更大。因此,未受到直接刺激影响的心物场的这个部分所发生的事情,并不有赖于组织的外力,而是完全由组织的内力来决定,这些内力是在直接刺激引起的那些场事件之间获得的。正如图20所示(空白的中央部分与盲点的未兴奋区域相一致),这些场事件并不处于平衡状态,但是,由于以下事实,即没有外力去决定在它们的中心将发生什么事,因此,它们可以而且将会产生一个完整的“十字形组织”,平衡便是在其中获得的。如果十字形的两臂颜色不同,那么,水平臂将决定中心的颜色,因为水平臂部分地落在视网膜区域,这个区域更加中心,功能上更加有效,所以,比起垂直臂来,它将被组织得更好,看上去更清楚。当然,水平臂占支配地位可能有其他原因;尽管如此,这种支配作用也可以通过在其他方面使垂直臂更具印象而得到克服。因此,中心的组织有赖于组织外部有关部分的力;在这一例子中,我们已经把组织的内力孤立起来了。

    2.偏盲实验

    盲点方面的实验有一个欠缺;它的位置如此接近边缘,以致于在盲点邻近地区看到的物体无法清晰地被组织。与中央相比,视网膜边缘的这种劣势是一种组织的劣势,如同其他的组织劣势一样,这种组织的劣势可以与劣势的色彩视觉结合起来。因此,如果我们在视觉中枢开展一些类似的实验,由于视觉中枢没有因为清晰性的缺乏而使观察难以实现,那么,这将产生许多好处。这一可能性是由某些病理性例子提供的,主要由于大脑损伤,致使视野的一半变成全盲。这类偏盲(hemianopsia)的病例已被仔细研究过,这主要

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多