1化问题的三要素:设计变量,约束条件,目标函数。
2机械优设计数学规划法的核心:一、建立搜索方向,二、计算最佳步长因子
3外推法确定搜索区间,函数值形成高-低-高区间
4数学规划法的迭代公式是,其核心是建立搜索方向,和计算最佳步长
5若n维空间中有两个非零向量d0,d1,满足(d0)TGd1=0,则d0、d1之间存在_共轭关系
6,与负梯度成锐角的方向为函数值下降方向,与梯度成直角的方向为函数值不变方向。
外点;内点的判别
7那三种方法不要求海赛矩阵:最速下降法共轭梯度法变尺度法
8、那种方法不需要要求一阶或二阶导数:坐标轮换法
9、拉格朗日乘子法是升维法P37
10、惩罚函数法又分为外点惩罚函数法、内点惩罚函数法、混合惩罚函数法三种
11,.函数在点处的梯度为,海赛矩阵为
12.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用
来评价设计的优劣,同时必须是设计变量的可计算函数。
13.建立优化设计数学模型的基本原则是确切反映工程实际问题,的基础上力求简洁。
14.约束条件的尺度变换常称规格化,这是为改善数学模型性态常用的一种方法。
15,.随机方向法所用的步长一般按加速步长法来确定,此法是指依次迭代的步长按一定的比例递增的方法。
16.最速下降法以负梯度方向作为搜索方向,因此最速下降法又称为梯度法,其收敛速度较慢。
17二元函数在某点处取得极值的充分条件是必要条件是该点处的海赛矩阵正定
18.拉格朗日乘子法的基本思想是通过增加变量将等式约束优化问题变成无
约束优化问题,这种方法又被称为升维法。
19,改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩
20坐标轮换法的基本思想是把多变量的优化问题转化为单变量的优化问题
21.在选择约束条件时应特别注意避免出现相互矛盾的约束,,另外应当尽量减少不必要的约束。
22.目标函数是n维变量的函数,它的函数图像只能在n+1,空间中描述出来,为了在n维空间中反映目标函数的变化情况,常采用目标函数等值面的方法。
23协调曲线法是用来解决设计目标互相矛盾的多目标优化设计问题的。
24.机械优化设计的一般过程中,建立优化设计数学模型是首要和关键的一步,它是取得正确结果的前提。
25多元函数求极值的阻尼牛顿法的迭代公式
26无约束优化问题取得极值的充分必要条件是一阶导数等于零和二阶导数大于零。
27优化设计问题的基本解法有解析法和数值法
二.名词解释
1.凸规划:对于约束优化问题
若、都为凸函数,则称此问题为凸规划。是指当设计点沿该方向作微量移动时,目标函数值下降,且不会越出可行域。n个设计变量为坐标所组成的实空间,它是所有设计方案的组合收敛于
5.非劣解:是指若有m个目标,当要求m-1个目标函数值不变坏时,找不到一个X,使得另一个目标函数值比,则将此为非劣解。
6.黄金分割法:是指将一线段分成两段的方法,使整段长与较长段的长度比值等于较长段与较短段长度的比值。满足所有约束条件的设计点,它在设计空间中的活动范围称作可行域
2、在变尺度法中,为使变尺度矩阵与近似,并具有容易计算的特点,必须附加哪些条件?
答:(1)必须是对称正定的(2)要求有简单的迭代形式(3)必须满足拟牛顿条件
3,总结:无约束优化方法
只算函数值方法
1,坐标轮换法:小规模,收敛慢(无耦合问题快);2,单形替换法:中小规模,收敛较快,
3,格点法:非凸问题;4,MonteCarlo法:非凸问题。
计算一阶导数方法
梯度法:中小规模,开始快;2,共轭梯度法:中大规模,收敛快,程序简单;
变尺度法:中大规模,收敛快;4,Powell方法:中大规模,收敛快。
计算二阶导数方法
Newton方法:收敛快,计算难度大;2,共轭方向法:收敛快,计算难度大。
4.共轭梯度法中,共轭方向和梯度之间的关系是怎样的?试画图说明。
.对于二次函数,,从点出发,沿G的某一共轭方向作一维搜索,到达点,点处的搜索方向应满足,即终点与始点的梯度之差与的共轭方向正交。共轭梯度法是共轭方向法中的一种,在该方法中每一个共轭向量都依赖于迭代点处的负梯度构造出来的。共轭梯度法的第一个搜索方向取负梯度方向,这是最速下降法。其余各步的搜索方向是将负梯度偏转一个角度,也就是对负梯度进行修正。所以共轭梯度法的实质是对最速下降法的一种改进随机方向法的基本思路是在可行域内选择一个初始点,利用随机数的概率特性,产生若干个随机方向,并从中选择一个能使目标函数值下降最快的随机方向作为可行搜索方向。从初始点出发,沿搜索方向以一定的步长进行搜索,得到新的值,新点应该满足一定的条件,至此完成第一次迭代。然后将起始点移至,重复以上过程,经过若干次迭代计算后,最终取得约束最优解。K个设计点(n+1≤K≤2n)作为初始复合形的顶点。比较各顶点目标函数值的大小,去掉目标函数值最大的顶点(称最坏点),以坏点以外其余各点的中心为映射中心,用坏点的映射点替换该点,构成新的复合形顶点。反复迭代计算,使复合形不断向最优点移动和收缩,直至收缩到复合形的顶点与形心非常接近,且满足迭代精度要求为止。
四.计算题
1、求目标函数f(X)=2x12+3x22-x1x2-2x2-在点X1=处的函数变化率最大的方向及其数值。
解:▽f(x1)==
数值
求函数f(X)=x13+x22-4x1-2x2+在点X1(2,1)处的二阶泰勒展开式。
解:
=6x12+x22-16x1+6+
用共轭梯度法求函数f(X)=2x1^2-x1x2+3x2^2+5的最优解,初始点(1,2),迭代精度
解:
4,求函数的极值。
解首先,根据极值的必要条件求驻点
得驻点为
再根据极值的充分条件,判断此点是否为极值点。由于
的一阶主子式和二阶主子式分别为
故为正定矩阵为极小点,相应的极值为
5.试用牛顿法求的最优解,设。
初始点为,则初始点处的函数值和梯度分别为
,沿梯度方向进行一维搜索,有
为一维搜索最佳步长,应满足极值必要条件
从而算出一维搜索最佳步长
则第一次迭代设计点位置和函数值
的极小点和极小值,设搜索区间
(迭代一次即可)
解:显然此时,搜索区间,首先插入两点,由式
计算相应插入点的函数值因为。所以消去区间,得到新的搜索区间,
即。
第一次迭代:
插入点
相应插入点的函数值,
由于故消去所以消去区间,得到新的搜索区间,则形成新的搜索区间。+5的极小点,设。
解:由,则
,其逆矩阵为
因此可得:
,从而经过一次迭代即求得极小点,
8.表是用黄金分割法求目标函数的极小值的计算过程,请完成下表。
迭代序号 a b 比较 0 0.2 1 1
迭代序号 a b 比较 0 0.2 0.5056 0.6944 1 40.0626 〉 29.4962 1 0.5056 0.6944 0.8111 1 29.4962 〉 25.4690
|
|