分享

13年--新型中考试题及分析

 CH加减乘除 2013-07-19

13年--新型中考试题及分析

1、请阅读下列材料:

问题:已知方程x2+x1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.

解:设所求方程的根为y,则y=2x所以x=错误!未找到引用源。        

x=错误!未找到引用源。代入已知方程,得(错误!未找到引用源。2+错误!未找到引用源。1=0

化简,得y2+2y4=0          

故所求方程为y2+2y4=0

这种利用方程根的代换求新方程的方法,我们称为换根法

请用阅读村料提供的换根法求新方程(要求:把所求方程化为一般形式):

(1)已知方程x2+x2=0,求一个一元二次方程,使它的根分别为己知方程根的相反数,

则所求方程为:                

2)己知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数.

分析:根据所给的材料,设所求方程的根为y,再表示出x,代入原方程,整理即可得出所求的方程.

解答:解:(1)设所求方程的根为y,则y=x所以x=y    

x=y代入已知方程,得y2y2=0

故所求方程为y2y2=0

2)设所求方程的根为y,则y=错误!未找到引用源。x≠0),于是x=错误!未找到引用源。y≠0 x=错误!未找到引用源。代入方程ax2+bx+c=0,得a错误!未找到引用源。2+b?错误!未找到引用源。+c=0

去分母a+by+cy2=0  c=0ax2+bx=0于是方程ax2+bx+c=0有一个根为0不符合题意  c≠0

故所求方程为cy2+by+a=0c≠0).

点评本题是一道材料题考查了一元二次方程的应用以及解法是一种新型问题要熟练掌握

2、如图,线段AD=5A的半径为1CA上一动点,CD的垂直平分线分别交CDAD于点EB,连接BCAC,构成ABC,设AB=x

1)求x的取值范围;

2)若ABC为直角三角形,则x=              

3)设ABC的面积的平方为W,求W的最大值.

分析:(1)由AD=5AB=xBE垂直平分CD,可得BC=BD=5x,又由,A的半径为1,根据三角形三边关系,即可求得x的取值范围;

2)分别从若AB是斜边与BC是斜边去分析,利用勾股定理的知识,借助于方程即可求得x的值;

3)在ABC中,作CFABF,设CF=hAF=m,则W=错误!未找到引用源。xh2=错误!未找到引用源。x2h2

AC2AF2=BC2BF2,则1m2=5x2﹣(xm2,分别从2.4x3时与2x≤2.4去分析,即可求得答案.

解答:解:(1AD=5AB=xBE垂直平分CD       

BC=BD=5x,在ABC中,AC=1

5x)﹣1x1+5x),      解得:2x3

2∵△ABC为直角三角形, AB是斜边,

AB2=AC2+BC2 x2=5x2+1      x=2.6

BC是斜边,则BC2=AB2+AC2    即(5x2=x2+1  x=2.4      

故答案为:2.42.6

3)在ABC中,作CFABF,设CF=hAF=m,则W=错误!未找到引用源。xh2=错误!未找到引用源。x2h2

如图,当2.4x3时,AC2AF2=BC2BF2,则1m2=5x2﹣(xm2

得:m=错误!未找到引用源。    h2=1m2=错误!未找到引用源。

W=错误!未找到引用源。x2h2=6x2+30x36    W=6x错误!未找到引用源。2+错误!未找到引用源。  x=2.5时(满足2.4x3),W取最大值1.5

2x≤2.4时,

同理可得:W=6x2+30x36=6x错误!未找到引用源。2+错误!未找到引用源。   

x=2.4时,W取最大值1.441.5

综合①②得,W的最大值为1.5

点评:此题考查了三角形三边关系,线段垂直平分线的性质,直角三角形的性质以及二次函数的最值问题等知识.此题综合性很强,难度适中,解题的关键是注意数形结合与分类讨论思想的应用.

3、如图,ABC是边长为1的等边三角形.取BC边中点E,作EDABEFAC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1FBE1F1EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2011=              

分析:先根据ABC是等边三角形可求出ABC的高,再根据三角形中位线定理可求出S1的值,进而可得出S2的值,找出规律即可得出S2011的值.

解答:解:∵△ABC是边长为1的等边三角形,

∴△ABC的高=AB?sinA=1×错误!未找到引用源。=错误!未找到引用源。  DFEFABC的中位线,  

AF=错误!未找到引用源。     S1=错误!未找到引用源。×错误!未找到引用源。×错误!未找到引用源。=错误!未找到引用源。

同理可得,S2=错误!未找到引用源。×错误!未找到引用源。…   Sn=错误!未找到引用源。错误!未找到引用源。n1

S2011=错误!未找到引用源。?错误!未找到引用源。(表示为错误!未找到引用源。?错误!未找到引用源。亦可).

故答案为:S2011=错误!未找到引用源。?错误!未找到引用源。(表示为错误!未找到引用源。?错误!未找到引用源。亦可).

点评:本题考查的是相似多边形的性质,涉及到等边三角形的性质、锐角三角函数的定义、特殊角的三角函数值及三角形中位线定理,熟知以上知识是解答此题的关键.

4、在正方形ABCD的边AB上任取一点E,作EFABBD于点F,取FD的中点G,连接EGCG,如图(1),易证 EG=CGEGCG

1)将BEF绕点B逆时针旋转90°,如图(2),则线段EGCG有怎样的数量关系和位置关系?请直接写出你的猜想.

2)将BEF绕点B逆时针旋转180°,如图(3),则线段EGCG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.

分析:从图(1)中寻找证明结论的思路:延长FEDC延长线于M,连MG.构造出GFE≌△GMC.易得结论;在图(2)、(3)中借鉴此解法证明.

解答:解:(1 EG=CGEGCG      2EG=CGEGCG          

证明:延长FEDC延长线于M,连MG  

∵∠AEM=90°EBC=90°BCM=90°

四边形BEMC是矩形.BE=CMEMC=90°

BE=EFEF=CM∵∠EMC=90°FG=DG

MG=错误!未找到引用源。FD=FG  BC=EMBC=CDEM=CD

EF=CMFM=DM∴∠F=45°

FG=DGCMG=错误!未找到引用源。EMC=45°  

∴∠F=GMC     ∴△GFE≌△GMC    

EG=CG    FGE=MGC         

∵∠FMC=90°MF=MDFG=DGMGFD   

∴∠FGE+EGM=90°∴∠MGC+EGM=90°

EGC=90°EGCG               

点评:此题综合考查了旋转的性质及全等三角形的判断和性质,如何构造全等的三角形是难点,因此难度较大.

5、(本题满分10分)

在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.

1)实验操作:

在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:

2)观察发现:

任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数                的图象上;平移2次后在函数               的图象上……由此我们知道,平移次后在函数               的图象上.(请填写相应的解析式)

3)探索运用:

P从点O出发经过次平移后,到达直线上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标. 

解析:(1)(说明:描点正确得1分,坐标填写正确得1分)

2

3)设点Q的坐标为,依题意,    解这个方程组,得到点Q的坐标为

平移的路径长为50≤≤56    37.5≤≤42

而点Q的坐标为正整数,因此点Q的坐标为

6问题情境:已知矩形的面积为aa为常数,a0),当该矩形的长为多少时,它的周长最小?最小值是多少?

数学模型:设该矩形的长为x,周长为y,则yx的函数关系式为

探索研究:我们可以借鉴以前研究函数的经验,先探索函数的图象性质.

填写下表,画出函数的图象:

x

……

1

2

3

4

……

y

……

……

观察图象,写出该函数两条不同类型的性质;

在求二次函数y=ax2bxca≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x0)的最小值.

解决问题:用上述方法解决问题情境中的问题,直接写出答案.

【答案】 :⑴①

x

……

1

2

3

4

……

y

2

……

函数的图象如图.               

本题答案不唯一,下列解法供参考.

时,增大而减小;当,增大而增大;当时函数的最小值为2

=

=        =

=0,即时,函数的最小值为2 

仿⑴③== =          

=0,即时,函数的最小值为 

当该矩形的长为时,它的周长最小,最小值为 

7、某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:

1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;

2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;

现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)

  问题1:如图1,现有一块三角形纸板ABCP1P2三等分边ABR1R2三等分边AC

经探究知3(1)SABC,请证明.

   

    问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2Q1Q2三等分边DC.请探究S四边形ABCD之间的数量关系.

    问题3:如图3P1P2P3P4五等分边ABQ1Q2Q3Q4五等分边DC.若S四边形ABCD1,求

 问题4:如图4P1P2P3四等分边ABQ1Q2Q3四等分边DCP1Q1P2Q2P3Q3

将四边形ABCD分成四个部分,面积分别为S1S2S3S4.请直接写出含有S1S2S3S4的一个等式.

【答案】解:问题1P1P2三等分边ABR1R2三等分边AC

      P1R1P2R2BC∴△AP1 R1∽△AP2R2∽△ABC,且面积比为1:4:9

     9(4-1)SABC3(1)SABC

问题2:连接Q1R1Q2R2,如图,由问题1的结论,可知

     3(1)SABC 3(1)SACD

     3(1)S四边形ABCD

     P1P2三等分边ABR1R2三等分边ACQ1Q2三等分边DC

     可得P1R1:P2R2Q2R2:Q1R11:2,且P1R1P2R2Q2R2Q1R1

     ∴∠P1R1AP2R2AQ1R1AQ2R2A∴∠P1R1Q1P2R2 Q2

   由结论(2),可知

     3(1)S四边形ABCD

   问题3:设AB,设C

         由问题2的结论,可知A3(1)B3(1)

  AB3(1)(S四边形ABCDC)3(1)(1C)    C3(1)(ABC),即C3(1)[3(1)(1C)C]

    整理得C5(1),即5(1)              问题4S1S4S2S3

【分析】问题1:由平行和相似三角形的判定,再由相似三角形面积比是对应边的比的平方的性质可得。

        问题2:由问题1的结果和所给结论(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比,可得。

        问题3:由问题2的结果经过等量代换可求。     问题4:由问题2可知S1S4S2S3

 8,已知:如图1,图形满足AD=ABMD=MBA=72°M=144°.图形与图形恰好拼成一个菱形(如图2).记AB的长度为aBM的长度为b

1)图形B=        °,图形E=       °

2)小明有两种纸片各若干张,其中一种纸片的形状及大小与图形相同,这种纸片称为风筝一号;另一种纸片的形状及大小与图形相同,这种纸片称为飞镖一号

小明仅用风筝一号纸片拼成一个边长为b的正十边形,需要这种纸片   张;

小明若用若干张风筝一号纸片和飞镖一号纸片拼成一个大风筝(如图3),其中P=72°Q=144°,且PI=PJ=a+bIQ=JQ.请你在图3中画出拼接线并保留画图痕迹.(本题中均为无重叠、无缝隙拼接)

分析:(1)连接AM,根据三角形ADM和三角形ABM的三边对应相等,得到两三角形全等,根据全等三角形的对应角相等得到角B和角D相等,根据四边形的内角和为360°,由角DAB和角DMB的度数,即可求出角B的度数;根据菱形的对边平行,得到ABDC平行,得到同旁内角互补,即角A加角ADB加角MDC等于180°,由角A和角ADB的度数即可求出角FEC的度数;

2由题意可知,风筝一号纸片中的点A与正十边形的中心重合,由角DAB72°,根据周角为360°,利用360°除以72°即可得到需要风筝一号纸片的张数;

P为圆心,a长为半径画弧,与PIPJ分别交于两点,然后以两交点为圆心,以b长为半径在角IPJ的内部画弧,两弧交于一点,连接这点与点Q,画出满足题意的拼接线.

解答:解:(1)连接AM,如图所示:

AD=ABDM=BMAM为公共边,  ∴△ADM≌△ABM   ∴∠D=B

又因为四边形ABMD的内角和等于360°DAB=72°DMB=144°

∴∠B=错误!未找到引用源。=72°   在图2中,因为四边形ABCD为菱形,所以ABCD

∴∠A+ADC=A+ADM+CEF=180°A=72°ADM=72°    ∴∠CEF=180°72°72°=36°

2风筝一号纸片拼成一个边长为b的正十边形, 得到风筝一号纸片的点A与正十边形的中心重合,又A=72°    则需要这种纸片的数量=错误!未找到引用源。=5

根据题意可知:风筝一号纸片用两张和飞镖一号纸片用一张, 画出拼接线如图所示:

故答案为:(172°36°;(25

点评:此题考查掌握菱形的性质,灵活运用两三角形的全等得到对应的角相等,掌握密铺地面的秘诀,锻炼学生的动手操作能力,培养学生的发散思维,是一道中档题.

9(本题满分10)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案  (简称个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的15级税率情况见下表:

税级

现行征税方法

草案征税方法

月应纳税额x

税率

速算扣除数

月应纳税额x

税率

速算扣除数

1

x≤500

5

0

x≤1 500

5

0

2

500<x≤2000

10

25

1500<x≤4500

10

3

2000<x≤5000

15

125

4500<x≤9000

20

4

5000<x≤20000

20

375

9000<x≤35000

25

975

5

20000<x≤40000

25

1375

35000<x≤55 000

30

2725

  注:月应纳税额为个人每月收入中超出起征点应该纳税部分的金额.

  “速算扣除数是为快捷简便计算个人所得税而设定的一个数.

例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:

方法一:按13级超额累进税率计算,即500×5+1500×10%十600×15=265()

方法二:用月应纳税额x适用税率一速算扣除数计算,即2600×15%一l25=265()

(1)请把表中空缺的速算扣除数填写完整;

(2)甲今年3月缴了个人所得税1060元,若按个税法草案计算,则他应缴税款多少元?

(3)乙今年3月缴了个人所得税3千多元,若按个税法草案计算,他应缴的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?

【答案】(175   ……………………1     525   ……………………3

(2)设甲的月应纳税所得额为x元,

根据题意得20%x3751060 ……………………4

             解得x7175

甲这个月的应纳税所得额是7175  ……………………………5

若按个税法草案计算,则他应缴税款为(71751000)×20%525710()  6

(3)设乙的月应纳税所得额为x元,

根据题意得20%x37525%( x1000)975 8

             解得x17000……………………9

乙今年3月所缴税款的具体数额为17000×20%3753025()  ……………10

10、某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:

 定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.

 结论:在探讨过程中,有三位同学得出如下结果:

甲同学:在钝角、直角、不等边锐角三角形中分别存在____个、________个、_______个大小不同的内接正方形.

 乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.

 丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.

任务:(1)填充甲同学结论中的数据;

      2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;

      3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明(如图,设锐角ABC的三条边分别为不妨设,三条边上的对应高分别为,内接正方形的边长分别为.若你对本小题证明有困难,可直接用这个结论,但在证明正确的情况下扣1分).

                                                                                                       

.解析(1)1,2,3.      (2)乙同学的结果不正确.       例如:在RtABC中,B=90°.   如图,四边形DEFB是只有一个顶点在斜边上的内接正方

.设它的边长为a,则依题意可得:.       如图,四边形DEFH两个顶点都在斜上的内接正方形.设它的边长为,则依题意可得:.     .    

(3)丙同学的结论正确.

  ABC的三条边分别为不妨设,三条边上的对应高分别为,内接方形的边长分别为依题意可得:  .同理  .

   

     ==

=

                  ,即.

在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.                            

11、依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。

解:原方程可变形为    (__________________________)

去分母,得33x+5=2(2x1).       (__________________________)

去括号,得9x+15=4x2.             ____________________________

(____________________),9x4x=152.  (____________________________)

合并,得5x=17.                            (合并同类项)

____________________,x=.   _________________________

【答案】解:原方程可变形为 (__分式的基本性质_________)

去分母,得33x+5=2(2x1).       (_____等式性质2________________)

去括号,得9x+15=4x2.             ___去括号法则或乘法分配律_________

(______移项_______),9x4x=152.  (__等式性质1__________)

合并,得5x=17.                            (合并同类项)

_______系数化为1____,x=.   __等式性质2________

12根据给出的下列两种情况,请用直尺和圆规找到一条直线,把ABC恰好分割成两个等腰三角形(不写做法,但需保留作图痕迹);并根据每种情况分别猜想:AB有怎样的数量关系时才能完成以上作图?并举例验证猜想所得结论。

1)如图ABC中,C=90°A=24°

作图:

猜想:

验证:

2)如图ABC中,C=84°A=24°.

作图:

猜想:

验证:

【答案】

(1)作图:痕迹能体现作线段AB(AC、或BC)的垂直平分线,或作ACD=A(BCD=B)两类方法均可,

在边AB上找出所需要的点D,则直线CD即为所求

猜想:A+B=90°

验证:如在ABC中,A=30°B=60°时,有A+B=90°,此时就能找到一条把ABC恰好分割成两个等腰三角形的直线。

2)答:作图:痕迹能体现作线段AB(AC、或BC)的垂直平分线,或作ACD=A或在线段CA上截取CD=CB三种方法均可。在边AB上找出所需要的点D,则直线CD即为所求

猜想:B=3A

验证:如在ABC中,A=32°B=96,有B=3A,此时就能找到一条把ABC恰好分割成两个等腰三角形的直线。

13观察计算

时, 的大小关系是__________.当时, 的大小关系是__________

探究证明

如图所示,为圆O的内接三角形,为直径,过CD,设BD=b

1)分别用表示线段OCCD

2)探求OCCD表达式之间存在的关系(用含ab的式子表示).

归纳结论

根据上面的观察计算、探究证明,你能得出的大小关系是:____________

实践应用

要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.

解析;

观察计算:> =.  

探究证明:

1

  ABO直径,    .

      ∴∠A=BCD.

∴△∽△.  

.         ,     .         

2)当,=,> 

结论归纳    

实践应用

设长方形一边长为,则另一边长为,设镜框周长为l米,

 ≥             

,(米)时,镜框周长最小.         

此时四边形为正方形时,周长最小为.

14如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的错误!未找到引用源。,已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a cm,若铁钉总长度为6cm,则a的取值范围是(                  

分析:由题意得敲击2次后铁钉进入木块的长度是a+错误!未找到引用源。a,而此时还要敲击1次,所以两次敲打进去的长度要小于6,经过三次敲打后全部进入,所以三次敲打后进入的长度要大于等于6,列出不等式组即可得出答案.

解答:解:每次钉入木块的钉子长度是前一次的错误!未找到引用源。.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是acm

根据题意得:敲击2次后铁钉进入木块的长度是a+错误!未找到引用源。a错误!未找到引用源。acm

而此时还要敲击1次,

a的最大长度为:6cm,故错误!未找到引用源。a6

第三次敲击进去最大长度是前一次的错误!未找到引用源。,也就是第二次的错误!未找到引用源。=错误!未找到引用源。acm),

错误!未找到引用源。          

a的取值范围是:错误!未找到引用源。a错误!未找到引用源。.故答案为:错误!未找到引用源。a错误!未找到引用源。

点评:此题主要考查了一元一次不等式的应用,正确的分析得出两次敲打进去的长度和三次敲打进去的长度是解决问题的关键.

15如图所示,四边形OABC是矩形,点AC的坐标分别为(﹣30),(01),点D是线段BC 上的动点(与端点BC不重合),过点D作直线错误!未找到引用源。交折线OAB于点E

1)记ODE的面积为S,求Sb的函数关系式;

2)当点E在线段0A上时,且错误!未找到引用源。.若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.

分析:(1)要表示出ODE的面积,要分两种情况讨论,如果点EOA边上,只需求出这个三角形的底边OE长(E点横坐标)和高(D点纵坐标),代入三角形面积公式即可;如果点EAB边上,这时ODE的面积可用长方形OABC的面积减去OCDOAEBDE的面积;

2)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA边上的线段长度是否变化.

解答:解:(1四边形OABC是矩形,点AC的坐标分别为(﹣30),(01),

B(﹣31),

若直线经过点A(﹣30)时,则b=错误!未找到引用源。

若直线经过点B(﹣31)时,则b=错误!未找到引用源。            

若直线经过点C01)时,则b=1

① 若直线与折线OAB的交点在OA上时,即1b错误!未找到引用源。,如图1  

此时E2b0),  S=错误!未找到引用源。OE?CO=错误!未找到引用源。×2b×1=b

若直线与折线OAB的交点在BA上时,即错误!未找到引用源。b错误!未找到引用源。,如图2

此时E(﹣3错误!未找到引用源。),D2b21),S=S﹣(SOCD+SOAE+SDBE

=3[错误!未找到引用源。2b2×1+错误!未找到引用源。×52b?错误!未找到引用源。b+错误!未找到引用源。×3b错误!未找到引用源。] =错误!未找到引用源。bb2S=错误!未找到引用源。

2)如图3,设O1A1CB相交于点MOAC1B1相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积        由题意知,DMNEDNME

四边形DNEM为平行四边形,       根据轴对称知,MED=NED

MDE=NED      ∴∠MED=MDE         MD=ME     

平行四边形DNEM为菱形.        过点DDHOA,垂足为H

由题易知,错误!未找到引用源。=错误!未找到引用源。DH=1      HE=2        

设菱形DNEM的边长为a

则在RtDHN中,由勾股定理知:a2=2a2+12   

a=错误!未找到引用源。      S四边形DNEM=NE?DH=错误!未找到引用源。

矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为错误!未找到引用源。

点评:本题是一个动态图形中的面积是否变化的问题,看一个图形的面积是否变化,关键是看决定这个面积的几个量是否变化,本题题型新颖是个不可多得的好题,有利于培养学生的思维能力,但难度较大,

16、问题提出

我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中作差法就是常用的方法之一.所谓作差法:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式MN的大小,只要作出它们的差MN,若MN0,则MN;若MN=0,则M=N

MN0,则MN

问题解决

如图1,把边长为a+bab)的大正方形分割成两个边长分别是ab的小正方形及两个矩形,试比较两个小正

方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:M=a2+b2N=2ab  MN=a2+b22ab=ab2

abab20  MN0  MN

类别应用

1)已知小丽和小颖购买同一种商品的平均价格分别为错误!未找到引用源。/千克和错误!未找到引用源。/千克(ab是正数,且ab),试比较小丽和小颖所购买商品的平均价格的高低.

2)试比较图2和图3中两个矩形周长M1N1的大小(bc).

联系拓广

小刚在超市里买了一些物品,用一个长方体的箱子打包,这个箱子的尺寸如图4所示(其中bac0),售货员分别可按图5、图6、图7三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.

分析:类比应用(1)首先得出错误!未找到引用源。错误!未找到引用源。=错误!未找到引用源。,进而比较得出大小关系;

2)由图形表示出M1=2a+b+c+b=2a+4b+2cN1=2ac+b+3c=2a+2b+4c,利用两者之差求出即可.

联系拓广:分别表示出图5的捆绑绳长为L1,则L1=2a×2+2b×2+4c×2=4a+4b+8c

6的捆绑绳长为L2,则L2=2a×2+2b×2+2c×2=4a+4b+4c

7的捆绑绳长为L3,则L3=3a×2+2b×2+3c×2=6a+4b+6c,进而表示出它们之间的差,即可得出大小关系.

解答:解:类比应用

1错误!未找到引用源。错误!未找到引用源。=错误!未找到引用源。  ab是正数,且ab     错误!未找到引用源。0

错误!未找到引用源。错误!未找到引用源。   小丽所购买商品的平均价格比小颖的高;

2)由图知,M1=2a+b+c+b=2a+4b+2c   N1=2ac+b+3c=2a+2b+4c

         M1N1=2a+4b+2c﹣(2a+2b+4c=2bc),    bc2bc)>0

         即:M1N10M1N1  第一个矩形大于第二个矩形的周长.

联系拓广

设图5的捆绑绳长为L1,则L1=2a×2+2b×2+4c×2=4a+4b+8c

设图6的捆绑绳长为L2,则L2=2a×2+2b×2+2c×2=4a+4b+4c

设图7的捆绑绳长为L3,则L3=3a×2+2b×2+3c×2=6a+4b+6c

L1L2=4a+4b+8c﹣(4a+4b+4c=4c0 L1L2

L3L2=6a+4b+6c﹣(4a+4b+4c=2a+2c0  

L3L1=6a+4b+6c﹣(4a+4b+8c=2ac),  ac

2ac)>0     L3L1       

第二种方法用绳最短,第三种方法用绳最长.

点评:此题主要考查了整式的混合运算以及不等式的性质,根据已知表示出绳长再利用绳长之差比较是解决问题的关键.

17如图,ABCD是一张矩形纸片,AD=BC=1AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MBDN交于点K,得到MNK

1)若1=70°,求MKN的度数;

2MNK的面积能否小于错误!未找到引用源。?若能,求出此时1的度数;若不能,试说明理由;

3)如何折叠能够使MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.

分析:(1)根据矩形的性质和折叠的性质求出KNMKMN的度数,根据三角形内角和即可求解;

2)过M点作MEDN,垂足为E,通过证明NK≥1,由三角形面积公式可得MNK的面积不可能小于错误!未找到引用源。

3)分情况一:将矩形纸片对折,使点BD重合,此时点K也与D重合;情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC两种情况讨论求解.

解答:解:(1ABCD是矩形,  AMDN ∴∠KNM=1 ∵∠1=70°  ∴∠KNM=KMN=70°

 ∴∠MKN=40°

   

2)不能.

M点作MEDN,垂足为E,则ME=AD=1  ∵∠KNM=KMN  MK=NK,又MKME  NK≥1

∴△MNK的面积=错误!未找到引用源。NK?ME错误!未找到引用源。         ∴△MNK的面积不可能小于错误!未找到引用源。

3)分两种情况:

情况一:将矩形纸片对折,使点BD重合,此时点K也与D重合.MK=MD=x,则AM=5x

由勾股定理得12+5x2=x2 解得x=2.6 

MD=ND=2.6 SMNK=SMND=错误!未找到引用源。=1.3

情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC MK=AK=CK=x

DK=5x

同理可得MK=NK=2.6  

MD=1    

SMNK=SMND=错误!未找到引用源。=1.3     MNK的面积最大值为1.3

点评:本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,三角形的面积计算,注意分类思想的运用,综合性较强,有一点的难度.

18知识背景:恩施来凤有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地市场出售时,基地要求杨梅用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图)

1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.

按方案1(如图)做一个纸箱,需要矩形硬纸板A1B1C1D1的面积是多少平方米?

小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A2B2C2D2做一个纸箱比方案1更优,你认为呢?请说明理由.

2)拓展思维:北方一家水果商打算在基地购进一批野生杨梅,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.

分析:(1利用宽与长的比是黄金比,取黄金比为0.6,假设底面长为x,宽就为0.6x,再利用图形得出QM=错误!未找到引用源。+0.5+1+0.5+错误!未找到引用源。=3FH=0.3+0.5+0.6+0.5+0.3=2.2,进而求出即可;

根据菱形的性质得出,对角线乘积的一半绝对小于矩形边长乘积即可得出答案;

2)根据相似三角形的性质面积比等于相似比的平方得出即可.

解答:解:(1①∵纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米,

假设底面长为x,宽就为0.6x  体积为:0.6x?x?0.5=0.3   解得:x=1    

AD=1CD=0.6

DW=KA=DT=JC=0.5FT=JH=错误!未找到引用源。CD=0.3   WQ=MK=错误!未找到引用源。AD=错误!未找到引用源。    QM=错误!未找到引用源。+0.5+1+0.5+错误!未找到引用源。=3

      FH=0.3+0.5+0.6+0.5+0.3=2.2    

矩形硬纸板A1B1C1D1的面积是3×2.2=6.6平方米;

从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A2B2C2D2做一个纸箱比方案1更优,

如图可知MAENBGHCFFDQ面积相等,且和为2个矩形FDQD1

菱形的性质得出,对角线乘积的一半绝对小于矩形边长乘积;

从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A2B2C2D2做一个纸箱比方案1更优,

2将纸箱的底面周长、底面面积和高都设计为原来的一半时,

边长为:0.50.3,底面积将变为:0.3×0.5=0.15,将变为原来的错误!未找到引用源。,高再变为原来的一半时,

 体积将变为原来的错误!未找到引用源。       水果商的要求不能办到.

点评:此题主要考查了一元二次方程的应用以及正方形性质与菱形性质等知识,根据题意得出DW=KA=DT=JC=0.5FT=JH=错误!未找到引用源。CD=0.3WQ=MK=错误!未找到引用源。AD=错误!未找到引用源。是解决问题的关键.

19如图,在平面直角坐标系中,直线AC错误!未找到引用源。x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c过点A、点C,且与x轴的另一交点为Bx00),其中x00,又点P是抛物线的对称轴l上一动点.

1)求点A的坐标,并在图1中的l上找一点P0,使P0到点A与点C的距离之和最小;

2)若PAC周长的最小值为错误!未找到引用源。,求抛物线的解析式及顶点N的坐标;

3)如图2,在线段CO上有一动点M以每秒2个单位的速度从点C向点O移动(M不与端点CO重合),过点MMHCBx轴于点H,设M移动的时间为t秒,试把P0HM的面积S表示成时间t的函数,当t为何值时,S有最大值,并求出最大值;

4)在(3)的条件下,当错误!未找到引用源。时,过Mx轴的平行线交抛物线于EF两点,问:过EFC三点的圆与直线CN能否相切于点C?请证明你的结论.(备用图图3

分析:(1)由题意AB点关于抛物线对称,则BC所在直线与对称轴的交点即为P0

2)由(1)所求可知该题周长最小即为 AC+BC的长,从而求出x0,而解得;

3)由在三角形OBC三角形CMN,得到高关于t的式子,因为MHBC,得到三角形MHP0三角形底边关于t的表达式,根据t的取值范围,从而求得S的最大值.

4)把S的取值代入(3)中表达式中求得t,从而得到点M的坐标,从而证明各点.

解答:解:(1)由题意直线ACx轴的交点为A    所以当y=0,则x=6   所以点A(﹣60).

同理点C08),   由题意,AB是抛物线y=ax2+bx+8x轴的交点,

6x0是一元二次方程ax2+bx+8=0的两个根,  6+x0=错误!未找到引用源。,﹣6x0=错误!未找到引用源。    

a=错误!未找到引用源。b=错误!未找到引用源。+错误!未找到引用源。

AB点关于抛物线对称,BC所在直线与对称轴的交点即为P0

设直线BC的解析式为y=mx+n,则n=8mx0+n=0    m=错误!未找到引用源。n=8    

BC的解析式为y=错误!未找到引用源。x+8

x=错误!未找到引用源。=错误!未找到引用源。时,y=错误!未找到引用源。+4   

P0的坐标为(错误!未找到引用源。错误!未找到引用源。+4);

2)由(1)可知三角形PAC最小

即为AC+BC=10错误!未找到引用源。    错误!未找到引用源。+错误!未找到引用源。=10错误!未找到引用源。

解得x0=10x0=10(不符舍去),    则点B100),

由点ABC三点的二次函数式为

y=错误!未找到引用源。=错误!未找到引用源。

x22+错误!未找到引用源。   顶点N2错误!未找到引用源。);

3)如图,作MNBCN  则在三角形OBC三角形CMN

所以错误!未找到引用源。  h=错误!未找到引用源。.因为MHBC   所以错误!未找到引用源。

解得MH=错误!未找到引用源。=错误!未找到引用源。

S=错误!未找到引用源。=错误!未找到引用源。

因为每秒移动2个单位,         则当t=2时符合范围0t4            

所以当t2S最大;

4)把S的取值代入(3)中表达式中求得t 从而得到点M的坐标,错误!未找到引用源。,即错误!未找到引用源。

则解得t=2 则由题意知CEF三点所在圆半径为4     

 所以直线CNCFE所在圆相切.

点评:本题考查了二次函数的综合应用,知道三点求二次函数式,考查一次函数与二次函数的结合求三角形面积,知道面积求点,很好结合,是道好题.

202011?十堰)如图,己知抛物线y=x2+bx+cx 轴交于点A10)和点 B,与y轴交丁点C 0,﹣3).

1)求抛物线的解析式;

2)如图(1),己知点H0,﹣1).问在抛物线上是否存在点G (点Gy轴的左侧),使得SGHC=SGHA?若存在,求出点G的坐标,若不存在,请说明理由:

3)如图(2),抛物线上点Dx轴上的正投影为点E(﹣20),FOC的中点,连 DFP为线段BD上的一点,若EPF=BDF

求线段PE的长.

分析:(1)由抛物线y=x2+bx+cx 轴交于点A10)和点 B,与y轴交丁点C 0,﹣3),利用待定系数法即可求得二次函数的解析式;

2)分别从GHACGHAC不平行去分析,注意先求得直线GH的解析式,根据交点问题即可求得答案,小心不要漏解;

3)利用待定系数法求得直线DF的解析式,即可证得PBE∽△FDP,由相似三角形的对应边成比例,即可求得答案.

解答:解:(1)由题意得:错误!未找到引用源。   解得:错误!未找到引用源。 

抛物线的解析式为:y=x2+2x3

2)解法一:    假设在抛物线上存在点G,设Gmn),

显然,当n=3时,AGH不存在.

n>﹣3时,   可得SGHA=错误!未找到引用源。+错误!未找到引用源。+错误!未找到引用源。SGHC=m   

SGHC=SGHA    m+n+1=0

错误!未找到引用源。

解得:错误!未找到引用源。错误!未找到引用源。

Gy轴的左侧,  G(﹣错误!未找到引用源。错误!未找到引用源。);

当﹣4≤n<﹣3时,   可得SGHA=错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。SGHC=m

SGHC=SGHA  3mn1=0

错误!未找到引用源。   解得:错误!未找到引用源。错误!未找到引用源。 

Gy轴的左侧, G(﹣1,﹣4).

存在点G(﹣错误!未找到引用源。错误!未找到引用源。)或G(﹣1,﹣4).

解法二:  如图,当GHAC时,点A,点CGH的距离相等, 

 SGHC=SGHA,可得AC的解析式为y=3x3 

 GHAC,得GH的解析式为y=3x1      G(﹣1,﹣4);

如图,当GHAC不平行时, AC到直线GH的距离相等,

直线GH过线段AC的中点M错误!未找到引用源。,﹣错误!未找到引用源。).直线GH的解析式为y=x1

G(﹣错误!未找到引用源。错误!未找到引用源。), 存在点G(﹣错误!未找到引用源。错误!未找到引用源。)或G(﹣1,﹣4).

3)如图E(﹣20),D的横坐标为﹣2 D在抛物线上,

D(﹣2,﹣3), FOC中点,   F0,﹣错误!未找到引用源。),

直线DF的解析式为:y=错误!未找到引用源。x错误!未找到引用源。   则它与x轴交于点Q20),

QB=QD,得QBD=QDBBPE+EPF+FPD=DFP+PDF+FPD=180°

∵∠EPF=PDF   ∴∠BPE=DFP ∴△PBE∽△FDP

错误!未找到引用源。   得:PB?DP=错误!未找到引用源。       PB+DP=BD=错误!未找到引用源。

PB=错误!未找到引用源。,即PBD的中点,连接DERtDBE中,PE=错误!未找到引用源。BD=错误!未找到引用源。

点评:此题考查了待定系数法求二次函数的解析式,直线与二次函数的交点问题以及三角形面积问题的求解等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想、分类讨论思想与方程思想的应用。

21如图1RtABC两直角边的边长为AC1BC2

1)如图2ORtABC的边AB相切于点X,与边CB相切于点Y.请你在图2中作出并标明O的圆心O;(用尺规作图,保留作图痕迹,不写作法和证明)

2P是这个RtABC上和其内部的动点,P为圆心的PRtABC的两条边相切.设P的面积为s,你认为能否确定s的最大值?若能,请你求出s的最大值;若不能,请你说明不能确定s的最大值的理由.

解析;

(1)(标出了圆心,没有作图痕迹的评1分)看见垂足为YX)的一   线 ( ABC的平分线)即评1分,

(2)PRtABC的边 ABBC相切时,由角平分线的性质,动点PABC的平分线BM上的点.

如图1,在ABC的平分线BM上任意确定点P1  (不为ABC的顶点)

 OX BOsinABM,  P1ZBP1sinABM

 BP1BO  P1ZOX,PB的距离越大,P的面积越大.

这时,BMAC的交点P是符合题意的、BP长度最大的点.  

如图2∵∠BPA90°,过点PPEAB,垂足为E,则E在边AB.

P为圆心、PC为半径作圆,则P与边CB相切于C,与边AB相切于E

即这时的P是符合题意的圆.        这时P的面积就是S的最大值.

∵∠AABCAAEP90°, RtABCRtAPE   

.  AC1BC2AB.

PCx,则PAACPC1x,   PCPE

  x   

如图3,同理可得:当PRtABC的边ABAC相切时,设PCy,则   y.    

如图4,同理可得:当PRtABC的边BCAC相切时,

PFz,则  z=.     

可知:  2 213

当分子、分母都为正数时,若分子相同,则分母越小,这个分数越大,

(或者:x=24,   y= = 5, 

yx=>0, y>xzy=>0)

2             zyx.   

∴⊙P的面积S的最大值为.  

22数学课堂上,徐老师出示一道试题:

如图(十)所示,在正三角形ABC中,MBC边(不含端点BC)上任意一点,PBC延长线上一点,NACP的平分线上一点AMN60°,求证:AMMN

(1)经过思考,小明展示了一种正确的证明过程请你将证明过程补充完整

证明:在AB上截取EAMC,连结EM,得AEM

∵∠1180°AMBAMN2180°AMBBAMNB60°

∴∠12

CN平分ACP42(1)ACP60°∴∠MCN34120°…………

BABCEAMCBAEABCMC,即BEBM

∴△BEM为等边三角形∴∠660°∴∠5180°6120°………

①②MCN5

AEMMCN中,12  AE=MC  MCN5

AEMMCN (ASA)AMMN

(2)若将试题中的正三角形ABC改为正方形A1B1C1D1(如图),N1D1C1P1的平分线上一点,则当A1M1N190°时,结论A1M1M1N1是否还成立?(直接写出答案,不需要证明)

【答案】:成立   上截取

(3) 若将题中的正三角形ABC改为正多边形AnBnCnDnXn,请你猜想:当AnMnNn    °时,结论AnMnMnNn仍然成立?(直接写出答案,不需要证明)

    

【解题思路】:AMN=60° 32/3 ×180°A1M1N1=90°=(42/4  ×180°

AnMnNnn2/n  ×180°【点评】:本题考察了三角形全等的判定,当全等三角形不明确时构建全等三角形是本题的主旨,如何构建就是个人长期学习练习形成的,难度较大的是第三问,这里如果能快速判定该角度数是180的若干倍,且这个倍数与正多边形的边数有内在联系将容易分析。难度较大

23九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践—— 应用 ---探究的过程:

1)实践:他们对一条公路上横截面的单向双车道的隧道(如图)进行测量,测得一隧道的路面宽为10m,隧道顶部最高处距地面6.25m,并画出了隧道截面图,建立了如图所示的直角坐标系,请你求出抛物线的解析式。

解:根据题意可知:抛物线的顶点坐标为(56.25)设函数解析式为y=a(x5)2+6.25.

又抛物线经过原点(00),0=a(05)2+6.25. 解得:a=4(1)

函数解析式为y=4(1)(x5)2+6.25   0≤x≤10

2)应用:规定机动车辆通过隧道时,车顶部于隧道在竖直方向上的高度差至少为0.5m,为了确保安全,问该隧道能否让最宽3m,最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车的空隙)?

解:,设并行的两车为矩形ABCDAB=3×2=6,AD=3.5       

A点横坐标为2,代入y=4(1)(x5)2+6.25

y=4(1)(25)2+6.25=43.5          

 所以该隧道能让最宽3m,最高3.5m的两辆厢式货车居中并列行驶

3)探究:该课题学习小组为进一步探抛物线的有关知识,他们借助上述抛物线模型,提出了一下两个问题,请予解答:

1、如图,在抛物线内作矩形ABCD,使顶点CD落在抛物线上,顶点AB落在x轴上设矩形ABCD的周长为l,求l的最大值。

解:设A点横坐标为m,则AB=102mDm4(-m2+10m)

矩形ABCD的周长为l=2AD+AB=2102m+4(-m2+10m)=2(-m2+2m+40)=2(m-12+41)

a=2(1)0,抛物线开口向下,  m=1,矩形ABCD的周长l的最大值为2(41)

2、如图,过原点作一条y=x的直线OM,交抛物线于点M,交抛物线对称轴于点NP为直线OM上一动点,过P点作x轴的垂线交抛物线于点Q。问在直线OM上是否存在点P,使以PNQ为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由。

解:存在这样的点P,使得PNQ为等腰直角三角形。

直线OMy=x与对称轴的交点N55,与直线段PQ交于点P,显然当Q点纵坐标为5,QN//x,ONQ=NOx=45°,PQN为等腰直角三角形。

此时,5=4(-m2+10m),解得:m=5±     P(55)P(5+5+)时,PQN为等腰直角三角形。

24如图1ADAE分别是ABCBC边上的高和中线,点D是垂足,点EBC的中点,规定:λA=错误!未找到引用源。.特别地,当点DE重合时,规定:λA=0.另外,对λBλC作类似的规定.

1)如图2,在ABC中,C=90°A=30°,求λAλC

2)在每个小正方形边长均为14×4的方格纸上,画一个ABC,使其顶点在格点(格点即每个小正方形的顶点)上,且λA=2,面积也为2

3)判断下列三个命题的真假(真命题打“√”,假命题打“×”):

ABCλA1,则ABC为锐角三角形;    

ABCλA=1,则ABC为锐角三角形;     

ABCλA1,则ABC为钝角三角形.       

分析:(1)根据直角三角形斜边中线、高的特点进行转换即可得出答案,

2)根据题目要求即可画出图象,         3)根据真假命题的定义即可得出答案.

解答:解:(1)如图,作BC边上的中线AD,又ACDC      λA=错误!未找到引用源。=1

过点C分别作AB边上的高CE和中线CF∵∠ACB=90°AF=CF∴∠ACFCAF=30°∴∠CFE=60°

λC=