第十讲 列方程解应用题 数学是一门具有广泛应用性的科学,我国著名数学家华罗庚先生曾说过:“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学”. 数学应用题的类型很多,比较简单的是方程应用题,又以一元一次方程应用题最为基础,方程应用题种类繁多,以行程问题最为有趣而又多变. 行程问题的三要素是:距离(s)、速度(v)、时间(t),行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等. 熟悉相遇问题、追及问题等基本类型的等量关系是解行程问题的基础;而恰当设元、恰当借助直线图辅助分析是解行程问题的技巧. 例题 【例1】 某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A、C两地的距离为10千米,则A、B两地的距离为 千米. (重庆市竞赛题) 思路点拨 等量关系明显,关键是考虑C地所处的位置. 注: 列方程的方法为解应用题提供—般的解题步骤和规范的计算方法,使问题“化难为易”,充分显示了字母代数的优越性,它是算术方法解应用题在字母代数础上的发展. 【例2】 如图,某人沿着边长为 A.AB边上 B.DA边上 C.BC边上 D.CD边上 (安徽省竞赛题) 思路点拨 本例是一个特殊的环形的追及问题,注意甲实际在乙的前面3×90=270(米)处. 【例3】 父亲和儿子在 (重庆市竞赛题) 思路点拨 把问题转化为追及问题,即比较父亲追上儿子时,儿子跑的路程与50的大小,为了理顺步长、路程的关系,需增设未知数,这是解题的关键. 【例4】 钟表在12点钟时三针重合,经过多少分钟秒针第一次将分针和时针所夹的锐角平分? (湖北省数学竞赛选拔赛试题) 思路点拨 先画钟表示意图,运用秒针分别与时针、分针所成的角相等建立等量关系,关键是要熟悉与钟表相关的知识. 注: 明确要求将数学开放性问题作为考试的试题,是近一二年的事情,开放题是相对于常规的封闭题而言,封闭题往往条件充分,结论确定,而开放题常常是条件不充分或结论不确定,思维多向. 解钟表上的行程问题,常用到以下知识: (1)钟表上,相邻两个数字之间有5个小格,每个小格表示1分钟,如与角度联系起来,每一小格对应6°; (2)分针走一周,时针走 【例5】 七年级93个同学在4位老师的带领下准备到离学校32千米处的某地进行社会调查,可是只有一辆能坐25人的汽车.为了让大家尽快地到达目的地,决定采用步行与乘车相结合的办法。如果你是这次行动的总指挥,你将怎样安排他们乘车,才能使全体师生花最短的时间到达目的地?最短的时间是多少?(师生步行的速度是 思路点拨 人和车同时出发,由车往返接运,如能做到人车同时到达目的地,则时间最短,而实现同时到达目的地的关键在于平等地享用交通工具,这样,各组乘车的路程一样,步行的路程也就一样. 学力训练 1.甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度为每小时17.5千米,乙的速度为每小时15千米,则经过 小时,甲、乙两人相距32.5千米. 2.某人以 3.汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员揿一声喇叭,4秒后听到回响,已知声音的速度是每秒 (江苏省竞赛题) 4.现在是4点5分,再过 分钟,分针和时针第一次重合. 5.甲、乙两人同时从A地到B地,如果乙的速度v保持不变,而甲先用2v的速度到达中点,再用 A.甲、乙两人同时到达B地 B.甲先到B地 C.乙先到B地 D.无法确定谁先到 6.甲与乙比赛登楼,他俩从36层的长江大厦底层出发,当甲到达6楼时,乙刚到达5楼,按此速度,当甲到达顶层时,乙可到达( ). A.31层 B.30层 C.29层 D.28层 7.小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况,你能确定小明在12:00时看到的里程表上的数吗? 8.如图,是某风景区的旅游路线示意图,其中B、C、D为风景点,E为两条路的交叉点,图中数据为两相应点间的距离(单位:千米).一学生从A处出发,以 (1)当他沿着路线A→D→C→E→A游览回到A处时,共用了3小时,求CE的长. (2)若此学生打算从A处出发后,步行速度与在景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由.(不考虑其他因素). (江西省中考题) 9.某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,求此人此时骑摩托车的速度应该是多少? (湖北省孝感市竞赛题) 10..甲、乙两列客车的长分别为 (“希望杯”邀请赛试题) 11.甲、乙两地相距70千米,有两辆汽车同时从两地相向出发,并连续往返于甲、乙两地,从甲地开出的为第一辆汽车,每小时行30千米,从乙地开出的汽车为第二辆汽车,每小时行40千米,当从甲地开出的第一辆汽车第二次从甲地出发后与第二辆汽车相遇,这两辆汽车分别行驶了 千米和 千米. (武汉市选拔赛试题) 12.某商场有一部自动扶梯匀速由下而上运动,甲、乙两人都急于上楼办事,因此列车的错车问题有别于两人之间的相遇或追及问题(为什么?)解题的关键是将原问题转化为直线上的两人相遇或追及问题.在乘扶梯的同时匀速登梯,甲登了55级后到达楼上,乙登梯速度是甲的2倍(单位时间内乙登楼级数是甲的2倍),他登了60级后到达楼上,那么,由楼下到楼上自动扶梯级数为 . (北京市竞赛题) 13.博文中学学生郊游,沿着与笔直的铁路线并列的公路匀速前进,每小时走 A.2075 B. (“五羊杯”邀请赛试题) 14.上午九点钟的时候,时针与分针成直角,那么下一次时针与分针成直角的时间是( ). A.9时30分 B.10时5分 C.10时5 ( “希望杯”邀请赛试题) 15.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为3.6千米/小时,骑车人速度为10.8千米/小时,如果有一列火车从他们背后开过来,它通过行人用了22秒,通过骑车人用26秒,问这列火车的车身长为多少米? (河北省竞赛题) 16.2001年亚洲铁人三项赛在徐州市风光秀丽的云龙湖畔举行.比赛程序是:运动员先同时下水游泳1.5千米到第一换项点,在第一换项点整理服装后,接着骑自行车40千米到第二换项点,再跑步10千米到终点.下表是2001年亚洲铁人三项赛女子组(19岁以下)三名运动员在比赛中的成绩(游泳成绩即游泳所用时间,其他类推,表内时间单位为秒).
(1)填空(精确到0.01) 第191号运动员骑自行车的平均速度是 米/秒; 第194号运动员骑自行车的平均速度是 米/秒; 第195号运动员骑自行车的平均速度是 米/秒; (2)如果运动员骑自行车都是匀速的,那么在骑自行车的途中,191号运动员会追上195号或194号吗?如果会,那么追上时离第一换项点有多少米(精确到0.01)?如果不会,为什么? (3)如果运动员长跑也是匀速的,那么在长跑中途中这三名运动员有可能某人追上摸某人吗?为什么? 17.某出租汽车停车站已停有6辆出租汽车.第一辆出租车出发后,每隔4分钟就有一辆出租汽车开出,在第一辆汽车开出2分钟后,有一辆出租汽车进站,以后每隔6分钟就有一辆出租汽车回站,回站的出租汽车,在原有的出租汽车依次开出之后又依次每隔4分钟开出一辆.问:第一辆出租汽车开出后,经过最少多少时间,车站不能正点发车? (重庆市竞赛题) 18.今有12名旅客要赶往40千米远的汉口新火车站去乘火车,离开车时间只有3小时,他们步行的速度为每小时 参考答案 |
|