分享

单片机按键连接方法总结(五种按键扩展方案详细介绍)

 xingwangjy 2013-12-30
单片机按键连接方法总结(五种按键扩展方案详细介绍)

单片机在各种领域运用相当广泛,而作为人机交流的按键设计也有很多种。不同的设计方法,有着不同的优缺点。而又由于单片机I/O资源有限,如何用最少的I/O口扩展更多的按键是我所研究的问题。接下来我给大家展示几种自己觉得比较好的按键扩展方案,大家可以在以后的单片机电路设计中灵活运用。

1)、第一种是最为常见的,也就是一个I/O口对应一个按钮开关。

单片机按键连接方法总结(五种按键扩展方案详细介绍)

这种方案是一对一的,一个I/O口对应一个按键。这里P00到P04,都外接了一个上拉电阻,在没有开关按下的时候,是高电平,一旦有按键按下,就被拉成低电平。这种方案优点是电路简单可靠,程序设计也很简单。缺点是占用I/O资源多。如果单片机资源够多,不紧缺,推荐使用这种方案。

 

2)、第二种方案也比较常见,但是比第一种的资源利用率要高,硬件电路也不复杂。

单片机按键连接方法总结(五种按键扩展方案详细介绍)
这是一种矩阵式键盘,用8个I/O控制了16个按钮开关,优点显而易见。当然这种电路的程序设计相对也还是很简单的。由P00到P03循环输出低电平,然后检测P04到P07的状态。比方说这里P00到P03口输出1000,然后检测P04到P07,如果P04为1则说明按下的键为s1,如果P05为1则说明按下的是s2等等。为了电路的可靠,也可以和第一种方案一样加上上拉电阻。

3)、第三种是我自己搞的一种方案,可以使用4个I/O控制8个按键,电路多了一些二极管,稍微复杂了一点。

单片机按键连接方法总结(五种按键扩展方案详细介绍)

这个电路的原理很简单,就是利用二极管的单向导电性。也是和上面的方案一样,程序需要采用轮训的方法。比方说,先置P00到P03都为低电平,然后把P00置为高电平,接着查询P02和P03的状态,如果P02为高则说明按下的是s5,若P03为高则说明按下的是s6,然后再让P00为低,P01为高,同样检测P02和P03的状态。接下来分别让P02和P03为高,其他为低,分别检测P00和P01的状态,然后再做判断。这种方案的程序其实也不难。

4)这是我在一本书上看到的,感觉设计的非常巧妙,同样它也用到了二极管,不过比我的上一种方案的I/O利用率更高,他用4个I/O口控制了12个按键。我相信你了解了之后也会惊奇的。

单片机按键连接方法总结(五种按键扩展方案详细介绍)    首先好好品味一下这个方案吧,想想怎么来识别按键呢!

首先,我们让P00到P03全输出高电平。如果这个时候从P00到P03的任意一个端口检测到低电平,很容易知道是按下了那个键,肯定是s13到s16的其中一个。如果没有检测到信号,就进行下一次的检测,让P01到P03为高电平,P00为低电平,然后检测P01到P03的状态。如果P01为低,则按下的是s1,;P02为低,则按下的是s2;P03为低,则按下的是s3。

然后再让P00,P02,P03为高电平,P01为低电平。同理用上面的方法可以检测出按下的那个按键。(部分程序源代码会在后面贴出来,阅读代码可以更好理解电路

5)、接下来这种方案则更为强大。不过需要用到一个A/D转换器(有的单片机集成有A/D转换器,则更为方便)。如果A/D转化器的分辨率为n位,理论上是可以扩展2^n(2的n次方)个按键。

单片机按键连接方法总结(五种按键扩展方案详细介绍)
    这是一种接AD转化器的方案,有两种:第一种是并联式;第二种是串联式。在功能上也有些不同。第一种的话各个电阻值各不相同,当按下不同按键时,进入AD的模拟量是不一样的,通过AD转换,就可以得到按下的是哪个按键。方式一还可以同时识别多个按键,即可以设置组合键,只要电阻取得合适。
方式二各个电阻可以取一样的,方便计算,但是不能有组合按键。因为当按下上面的按键后,下面所有按键都会被短路。(在实际运用中,还需要接地,这里没有画出) 。前面说理论上可以扩展2^n个按键,这只是理论,因为这里电阻的精度有限,所以实际是不可能的,两个模拟量之间要有足够大的差值,程序才可能准确的分辨。

 

上面就是我介绍的五种按键扩展方案,后面几种比较另类,不过也有他们的优点。以上电路我都仿真过,可以实现。

附方案4键盘扫描源代码:

sbit line_1=P0.1;

sbit line_2=P0.2;

sbit line_3=P0.3;

sbit line_4=P0.4

char key=0;  

void key_scan()
{
    line_1=line_2=line_3=line_4=1;
        if(~(line_1&&line_2&&line_3&&line_4))
     {
        if(line_1==0) {key=13;return;}
        if(line_2==0) {key=14; return;}
        if(line_3==0) {key=15;return;}
        if(line_4==0) {key=16; return;}
     }
      
    line_2=line_3=line_4=1;
    line_1=0;
        if(~(line_2&&line_3&&line_4))
     
            delay();
            if(line_2==0) {key=1;return;}
            if(line_3==0) {key=2;return;}
            if(line_4==0) {key=3;return;}
     }
    line_1=line_3=line_4=1;
    line_2=0;
        if(~(line_1&&line_3&&line_4))
     
            delay();
            if(line_3==0) {key=5;return;}
            if(line_4==0) {key=6;return;}
     }
    line_1=line_2=line_4=1;
    line_3=0;
        if(~(line_2&&line_1&&line_4))
     
            delay();
            if(line_4==0) {key=9;return;}
     }
    line_4=0;
    line_1=line_2=line_3=1;
        if(~(line_2&&line_3&&line_1))
     
            delay();
            if(line_1==0) {key=10;return;}
            if(line_2==0) {key=11;return;}
            if(line_3==0) {key=12;return;}
     }
    line_3=0;
    line_1=line_2=line_4=1;
        if(~(line_2&&line_3&&line_4))
     
            delay();
            if(line_1==0) {key=7;return; }
            if(line_2==0) {key=8;return; }
     }
    line_2=0;
    line_1=line_3=line_4=1;
        if(~(line_2&&line_3&&line_4))
     
            delay();
            if(line_1==0) {key=4;return; }
     }
    return;
}

1 新型键盘电路

        键盘电路是单片机应用系统最常用的人机接口,往往要占用较多的I/O端口,利用本文介绍的电路,可以最大限度地减少键盘电路对I/O端口的点用。本电路特别适合一些引脚少、结构紧凑的单片机,可为其节省宝贵的I/O资源。

       这里以3根I/O线为例,普通接法只能接3个键,即使是采用改进后的组合接法[1],最多也只能接7个链,本文介绍的电路是在组合接法的基础上增加了3个二极管,并采用了新的接法。其软件处理使用了端口访问和扫描检测两种方法,从而使按键数可达到16个,同时由于采用了组合逻辑来直接对端口进行读取,因此极大地简经了程序的处理过程,同时也节省了宝贵的存储器和CPU运算资源。图1是该电路的电路原理图。

 

2 软件过程和程序

该电路在程序处理时,由处理器首先向I/O1~I/O3写高电平,然后读入。如果非全“1”,说明,K0~K6中有键按下,此时可根据读入的端口状态判断键的状态,如果读入的结果为全“1”,则I/O1~I/O3轮流输出低电平,再读入,这样就可根据另外两根I/O线的状态来判别是K7~K15中的哪一个键被按下。重复调用键盘处理子程序可将读取的键值与上次的值进行比较,甚至两次读数相同为止,这样即可消除按键抖动所造成的误读。该电路选用的单片机为 AT89C2051,用C51语言编写的按键电路处理程序如下:

#include<c:eg51.h>

#define uchar unsigned char

uchar getkey(void);

uchar keyvol;

void main(void)

{

keyvol=getkey(); /*调用键处理函数,返回的数据等于16表示同有键按下,0至15对应k0至K15*/

}

以下为键盘处理子程序:

uchar getkey(void)

{

uchar x

P1=P1|0x07; /*I/O1至I/O3写“1”*/

xP1&0x07; /*读入I/O1至I/O3并屏蔽其它位*/

if(x= =10)

{

P1=P1|0x07;

P1=P1&0xfd; /*I/O2写“0”*/

x=P1&0x07;

x=(x+1)/2+10; /*屏蔽I/O2并转换K10至K12的键值*/

if(x = =13)

{

P1=P1|0x07;

P1=P1&0xfb; /*I/O3写“0”*/

x=P1&0x07;

x=x+13; /*屏蔽I/O3并转换K13至K15的键值*/

}

}

}

return x;

}

利用该键盘电路并根据逻辑组合原理可推断开n条I/O线可组合的按键数N为:

N=(2n-1)+(2 n-1 -1)n

表1给出了2至4条I/O线可组合的按键数。

表1 2~4条I/O线可组合的按键数

I/O线 可组合按键 
2            5 
3           16 
4           43 

3 结束语

这种新型键盘电路在使用时非常稳定可靠,节省大量的I/O端口,而且程序处理也很简洁,速率比4×4的扫描式电路还要快,因此,该电路特别适合一些引脚较少的单片机,如PIC12C508、Z86E03以及AT89C2051等。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多