配色: 字号:
Adaptive Image Segmentation Based On Color And Texture
2014-01-08 | 阅:  转:  |  分享 
  
ADAPTIVEIMAGESEGMENTATIONBASEDONCOLORANDTEXTURE

JunqingChena0,ThrasyvoulosN.Pappasa1

ElectricalandComputerEngineeringDept.

NorthwesternUniversity,Evanston,IL60208

AleksandraMojsilovic,BerniceRogowitz

IBMT.J.WatsonResearchCenter

Hawthorn,NY10532

ABSTRACT

Weproposeanimagesegmentationalgorithmthatisbasedonspa-

tiallyadaptivecolorandtexturefeatures.Thefeaturesarefirst

developedindependently,andthencombinedtoobtainanoverall

segmentation.Texturefeatureestimationrequiresafiniteneigh-

borhoodwhichlimitsthespatialresolutionoftexturesegmenta-

tion,whilecolorsegmentationprovidesaccurateandpreciseedge

localization.Wecombineapreviouslyproposedadaptivecluster-

ingalgorithmforcolorsegmentationwithasimplebuteffective

texturesegmentationapproachtoobtainanoverallimagesegmen-

tation.Ourfocusisinthedomainofphotographicimageswith

anessentiallyunlimitedrangeoftopics.Theimagesareassumed

tobeofrelativelylowresolutionandmaybedegradedorcom-

pressed.

1.INTRODUCTION

ThefieldofContent-BasedImageRetrieval(CBIR)hasmadesig-

nificantadvancesduringthepastdecade[1,2].Anumberofprac-

ticalsystemshavebeenproposed,andtheMPEG-7standardspec-

ifiesdescriptorsforvisualcontent[3].Oneofthemostchalleng-

ingproblemsisimagesegmentation.Whilesignificantprogress

hasbeenmadeintexturesegmentation(e.g.,[4–7])andcolorseg-

mentation(e.g.,[8–10])separately,thecombinedtextureandcolor

segmentationproblemisconsiderablymorechallenging[11–13].

Inthispaper,weproposeanimagesegmentationalgorithm

thatisbasedonspatiallyadaptivecolorandtexturefeatures.These

featuresarebasedonperceptualmodelsandprinciplesaboutthe

processingoftextureandcolorinformation.Thecolorandtexture

featuresarefirstdevelopedindependently,andthencombinedto

obtainanoverallsegmentation.Oneofthemostsignificantdiffer-

encesbetweenthecolorandtexturefeaturesisthattexturerequires

afiniteneighborhoodtobedefined.Thislimitstheresolutionof

texturesegmentation.Colorsegmentation,ontheotherhand,can

provideveryaccurateandpreciseedgelocalization.Toaccom-

plishthisgoal,ourcolorsegmentationisbasedontheadaptive

clusteringalgorithm[8].Fortextureanalysis,weuseanestimate

oftheenergyofthecoefficientsofawaveletdecomposition[14].

Thekeytotheproposedapproachistheuseofthemedianoperator

forestimatingthetextureenergyinawindowaroundeachpixel.

Theadvantageofthemedianisthatitrespondstotexturewithin

uniformregionsandsuppressestexturesassociatedwithtransi-

tionsbetweenregions.Finally,inordertocombinethetexture

andcolorinformation,westartwiththetexturesegmentationand

usethecolorsegmentationtorefineit.

Ourfocusisinthedomainofphotographicimages,butwith

anessentiallyunlimitedrangeoftopics(people,nature,buildings,

textures,objects,indoorscenes,etc.).Theimagesareassumedto

a2SummerinternatIBM,2001

a3ConsultantatIBM,September2001

beofrelativelylowresolution(e.g.,a4a6a5a7a5a9a8a10a4a11a5a7a5)andoccasionally

degradedorcompressed.Anaddedadvantageisthatimageaccess

andprocessingtimewillbesignificantlyreduced.

Theimagesegmentationresultscanbeusedtoderiveregion-

widecolorandtexturefeatures,whichinturn,togetherwiththe

segmentlocation,boundaryshape,andregionsize,canbeusedto

extractsemanticinformation.Akeytothesuccessoftheproposed

approachistherecognitionofthefactthatitisnotnecessaryto

obtainacompleteunderstandingofagivenimage:Inmanycases,

itisenoughtoidentifyafewfeatures(colorcomposition,presence

ofkeysegmentssuchas“sky,”“mountains,”people,”etc.)tobe

abletoclassifyitinagivencategory[15].Thus,someofthe

regionswillbeclassifiedas“complex”or“noneoftheabove,”

andassuchwillstillplayasignificantroleinsceneanalysis.

InSection2,wediscusscolorfeatureextraction.Ourap-

proachfortexturefeatureextractionispresentedinSection3.Sec-

tion4discussesthecombinationoftextureandcolorfeaturesto

obtainanoverallsegmentation.

2.COLORFEATUREEXTRACTION

Colorhasbeenusedextensivelyasalow-levelfeatureforimage

retrieval[1,3].Manyoftheexistingtechniquesarebasedonthe

colorimagehistogram.Eventhoughsuchtechniqueshavebeen

quitesuccessfulingivensettings,theyhavesomenotableshort-

comings.First,thehistogramdoesnotincorporateanyspatialin-

formation.Second,thecolorhistogramistoofinelyquantizedin

colorspace,andhence,doesnottakeintoconsiderationthefact

thatthehumanvisualsystemcanonlyperceiveafewcolorsata

time.Theproposedapproachattemptstoobtainlow-levelcolor

featuresthatincorporateknowledgeofhumanperception.

Oneofthemostimportantcharacteristicsofhumancolorper-

ceptionisthatthehumaneyecannotsimultaneouslyperceivea

largenumberofcolors[16].Moreover,thenumberofcolorsthat

canbeinternallyrepresentedandidentifiedincognitivespaceis

about30[17].Inadditiontoprovidingaveryefficientrepresen-

tation,thecompactsetofcolorcategoriesalsomakesiteasierto

captureinvariantpropertiesinobjectappearance[18].

Maetal.[11]werethefirsttoproposeacompactcolorrepre-

sentationintermsofdominantcolorsforimagesegmentationand

retrieval.Therepresentationtheyproposedconsistsofthedom-

inantcolorsandthecorrespondingpercentageofoccurrenceof

eachcolor:a12

a13a15a14a17a16a19a18a21a20a23a22a25a24a21a26a27a22a29a28a30a24a25a31a32a14a34a33a7a24a36a35a23a35a37a35a38a24a40a39a41a24a42a26a27a22a44a43a46a45

a5

a24a36a33a37a47a42a48(1)

whereeachofthedominantcolors,a20a37a22,isathreedimensionalvec-

torinRGBspace,anda26a49a22arethecorrespondingpercentages.

Thereareanumberofapproachesforextractingthedominant

colors.Oneapproachistousevectorquantization(VQ)toobtain

asetofcolorswhichminimizethemean-squarequantizationer-

rorforallthepixelsoftheimagesinagivendatabase[11,16].

Thisrequiresalargetrainingset,whichdramaticallyincreases

thecomputationalburdenforthecodebookdesign.Analternative

techniquethatavoidsthisproblemwasproposedbyMojsilovicet

al.[19].Ratherthantryingtofindasetofcolorsthatisrepresen-

tativeofallimagesoraparticularimagedatabase,onecanobtain

thedominantcolorsofagivenimage.Forexample,onecanuse

VQonasingleimage.Whiletheresultingcolorsmaybeuseful

incharacterizingtheimageasawhole,theresultingsegmentation

couldbequiteinadequateduetolackofspatialconstraintsand

spatialadaptation[8].

Theabovedominantcolorextractiontechniquesdependonthe

assumptionthatthecharacteristiccolorsofanimagearerelatively

constant,i.e.,theydonotchangeduetovariationsinillumination,

perspective,etc.Thisistrueforimagesoffabrics,carpets,interior

designpatterns,andotherpuretexturesthatweretheprimaryfocus

oftheworkpresentedin[16].Ourfocusofattention,however,is

onamoregeneralclassofimagesthatincludesoutdoorandindoor

scenes,includinglandscapes,cityscapes,plants,animals,people,

andman-madeobjects.Tohandlesuchimages,onehastoaccount

forcolorandlightingvariationsinthescene.

Arelativelysimpleandquiteeffectivealgorithmthatonecan

useforobtainingthedominantcolorsofanimageinthiswider

classofimagesisthecolorsegmentationalgorithmproposedby

ComaniciuandMeer[10].Itisbasedonthe“meanshift”algo-

rithmforestimatingdensitygradients,andessentiallyworkswith

theimagehistogram,eventhoughitalsoattemptstoincorporate

spatialconstraintsbyimposingconstraintsontheconnectivityof

thedetectedregions.However,itdoesnottakeintoconsideration

thatthecolorsinanimage(andhencethedominantcolors)may

beslowlyvaryingacrosstheimage.

Instead,weproposetousespatiallyadaptivedominantcol-

ors.Thisisnecessitatedbythespatiallyvaryingimagecharac-

teristicsandtheadaptivenatureofthehumanvisualsystem.For

example,anobserver’snotionofablueorbrownorgreencolor

ishighlydependentonthesurroundingcolors;moreover,itvaries

withthelightingconditionsandthecolorsofthedisplaydevice.

Thespatiallyadaptivedominantcolorscanbeobtainedbythe

adaptiveclusteringalgorithm(ACA)proposedin[8]andextended

tocolorin[9].TheACAisaniterativealgorithmthatusesspa-

tialconstraintsintheformofMarkovrandomfields(MRF).The

initialestimateisobtainedbythea50-meansalgorithm,whiches-

timatestheclustercenters(i.e.,thedominantcolors)byaveraging

thecolorsofthepixelsineachclassoverthewholeimage.As

thealgorithmprogresses,thedominantcolorsareupdatedbyav-

eragingoveraslidingwindowwhosesizeprogressivelydecreases.

Thus,thealgorithmstartswithglobalestimatesandslowlyadapts

tothelocalcharacteristicsofeachregion.

Whilethelocalcoloradaptationisnotsuitedforcomparing

wholeimages,weshowthatitsignificantlyimprovesimageseg-

mentation,asitvirtuallyeliminatesfalsecontoursandprovides

preciseboundarylocation.Moreover,incontrasttotheotherap-

proaches,theACAisquiterobusttothenumberofclasses.This

isbecausethecharacteristiclevelsofeachclassadapttothelocal

characteristicsoftheimage,andthus,regionsofentirelydifferent

intensitiescanbelongtothesameclass,aslongastheyaresepa-

ratedinspace.Wefoundthatthebestchoiceisfourclasses[8].

Fig.1comparestheComaniciu-Meeralgorithm[10](using

the“oversegmentation”settingfordeterminingthenumberofdom-

inantcolors)totheACA.Theimageresolutionisa51a7a52a11a53a9a54a55a51a19a56a37a57pix-

els.NotethefalsecontoursintheComaniciu-Meeralgorithmin

thewaterandthesky.Also,whiletherearecolorvariationsinthe

forestregion,thesegmentboundariesdonotappeartocorrespond

toanytruecolorboundaries.TheACAontheotherhand,smooths

overthewater,sky,andforestregions,whilecapturingthedom-

inantedgesofthescene.NotethattheACAwasdevelopedfor

imagesofobjectswithsmoothsurfacesandnotexture.Forsome

texturedregions,likethemountainarea,theACAoversegments

theimage,butthesegmentsdocorrespondtoactualtexturede-

tails.Thus,weneedsomeothermechanismtoconsolidatesuch

smallsegmentsintoregions.

ColorFeatures:TheACAprovidesasegmentationoftheimage

intoclasses.IntheexampleofFig.1(c),eachpixelwaspainted

withtheaveragecolorofthepixelsinitsneighborhoodthatbe-

longtothesameclass[8].Assumingthatthedominantcolorsare

slowlyvarying,wecanassumethattheyareapproximatelycon-

stantintheimmediatevicinityofapixel.Thus,wecancountthe

numberofpixelsineachclasswithinagivenwindow,andaverage

theircolorvaluestoobtainafeaturevectorthatconsistsofafew

(uptofour)dominantcolorsandtheassociatedpercentages.

ColorMetric:Oncewehavea(spatiallyvarying)representation

oftheform(1),weneedametricthatmeasurestheperceptualsim-

ilaritybetweenthefeaturevectors.Basedonhumanperception,

thecolorcompositionoftwoimagesorimagesegmentsissimi-

lar,iftwoconditionsaresatisfied[16,19]:Thecolorsaresimilar,

andthecorrespondingareapercentagesaresimilar.Thedefinition

ofametricthattakesintoaccountboththecolorandareadiffer-

ences,dependsonthemappingbetweenthedominantcolorsof

thetwoimages[19].Varioussuboptimalsolutionshavebeenpro-

posed[11,16].Mojsilovicetal.[19]definedametricthatfindsthe

optimalmappingbetweenthedominantcolorsoftheimagesand

callitthe“optimalcolorcompositiondistance(OCCD).”Ingen-

eral,thismetricrequiresmorecomputationthansimplermetrics.

However,sinceweareprimarilyinterestedincomparingimage

segmentsthatcontainonlyafewcolors(atmostfour),theaddi-

tionaloverheadfortheOCCDisreasonable.Moreover,weusea

moreefficientimplementation.

Theproposedcolorfeaturevectorandassociatedmetricincor-

porateknowledgeofthehumanvisualcharacteristics.Themost

importantnewelementoftheproposedapproachisthefactthat

thefeaturevectorconsistsofasmallnumberofspatiallyvarying

dominantcolors.Thisvariationreflectsthespatiallyvaryingimage

characteristicsandtheadaptivenatureofthehumanvisualsystem.

3.TEXTUREFEATUREEXTRACTION

Inthissection,wetrytoisolatethetexturalfeatureextractionfrom

thatofcolor.Wethusconsideronlythegrayscalecomponentof

theimagetoobtainthetexturefeaturesthatcanbeusedtoobtain

anintermediatesegmentation,whichcanthenbecombinedwith

thecolorfeaturestoproducethefinalsegmentation.Thisisin

contrasttosomeotherapproaches[13,16]wherethecolorquan-

tization/segmentationisusedtoobtainanachromaticpatternmap

whichisthebasisfortexturefeatureextraction.

Likemanyoftheexistingalgorithmsfortextureanalysisand

synthesis(e.g.,[6,20],ourapproachisbasedonamultiscalefre-

quencydecomposition.Suchdecompositionshavebeenwidely

usedasdescriptionsofearlyvisualprocessinginmammalsand

havealsobeenusedasthebasisfortextureclassificationandseg-

mentation(e.g.,[21–23]).

Whilethetexturesynthesisproblemrequiresaprecisemodel

inordertoaccuratelysynthesizeawiderangeoftextures,the

(a)OriginalColorImage(b)Comaniciu-MeerAlgorithm(c)AdaptiveClusteringAlgorithm(ACA)

Fig.1.ColorImageSegmentation(allimagesshownincolor)

modelforthesegmentationproblemcanbequitecrude.More-

over,wewanttocapturesuchinformationfromrelativelysmall

images,e.g.,a58a6a59a7a59a61a60a62a58a6a59a7a59pixels,whichmayhavebeencompressed

ordegraded.Thus,weexpectourtexturemodelstobealotsimpler

thanthoserequiredfortexturesynthesis.

Oneofthekeyideasintheproposedapproachisthatwedo

notneedtorecognizeeveryregioninanimage.Largeareasofan

imagemaybeclassifiedas“toocomplex,”or“nonoftheabove,”

andassuchplayaroleinoverallimageclassification.Inthispaper,

weusesimpletexturefeaturestoobtainasegmentationinalimited

numberoftextureclasses(“smooth,”“horizontal,”“vertical,”and

“complex”).Inthenextsection,weshowthatthissimpletexture

classificationcanleadtoimpressiveresults.

Forourtextureanalysis,weusethe9/7biorthogonalwavelet

decomposition[14]whichisseparableandcomputationallyeffi-

cient.Sincetheimagesarefairlysmall(approx.a58a6a59a7a59a63a60a64a58a11a59a7a59pix-

els),weobtainaone-levelwaveletdecomposition,andusetheHL

andLHbands,whereHandLstandforthehigh-passandlow-

passbandineachofthehorizontalandverticalorientations.We

foundthatdiscardingtheHHbanddoesnotresultinanysignifi-

cantlossofvisualquality,andhenceitshouldnotbecriticalfor

textureanalysis.Wealsotriedthesteerablepyramid[24]buthave

notfoundanysignificantperformancedifferences.

Themostcommonlyusedfeaturefortextureanalysisinthe

waveletdomainistheenergyofthesubbandcoefficients[4,5].

Sincethecoefficientsarequitesparse,itisnecessarytoperform

sometypeofwindowoperationtoobtainamoreuniformchar-

acterizationoftexture.In[4,5],theaverageoftheenergyofthe

coefficientsinasmallwindowwasused.In[11,20]boththemean

andstandarddeviationofthemagnitudeoftheGabortransform

coefficientswereusedastexturefeatures.Inthispaper,weuse

themedianoftheenergyinawindow.Theadvantageoftheme-

dianisthatittendstofilterouttexturesassociatedwithtransitions

betweenregions.Insuchcases,theincreaseinwaveletcoeffi-

cientsduetotheregionboundaryisconcentratedalongtheedge

andisnotpickedupbythemedianoperator.Extensiveexperimen-

tationwiththeaverage,median,andmaximumoperatorsindicates

thattheaverageresultsinsignificantsmoothingandfalsetextures

alongtheregionboundaries,whilethemaximumprovidesunre-

liableresults.Themedianleadstosignificantlysuperiorresults.

Thesizeofthewindowmustbelargeenoughtocapturethelo-

caltexturecharacteristics,butnottoolargetoavoidbordereffects.

Wefoundthatfortheimageresolutionandviewingdistanceunder

consideration,aa65a66a60a62a65windowgivesthebestresults.

Finally,wetrieddifferentclusteringapproachestoobtainthe

(intermediate)texturesegmentation.Thesimplestandmostef-

fectivewastoapplytwo-levelK-meanstoeachofthehorizontal

andverticalcomponentsseparately.Oneoftheclustercenterswas

alwaysfixedat0(smoothtexture)andtheotherwasdetermined

bytheK-meansalgorithm.Theaddedadvantageofthisapproach

isthatweobtainfourtextureclasseswithobviousinterpretations:

smoothtexture(0,0),verticaltexture(1,0),horizontaltexture(0,1),

andcomplextexture(1,1).Fig.2(c)showstheresults,withsmooth

texturerepresentedbyblack,verticalbylightgray,horizontalby

darkgray,andcomplexbywhite.WealsoexperimentedwithVQ

(K-meansappliedtothevectorofthetwocoefficients),butfound

verylittledifferenceinperformanceformostimages.Thefinal

paperwillcontainamoreextensivecomparisonoffrequencyde-

compositionsandclusteringalgorithms.

4.COMBINATIONOFTEXTUREANDCOLOR

Wenowdiscussthecombinationofthetextureandcolorsegmen-

tationstoobtainthefinalimagesegmentation.Westartwiththe

texturesegmentationandusethecolorsegmentationtorefineit.

First,weconsiderthe“smooth”textureregions.Werelyonthe

colorsegmentationtodetermineiftheyshouldbefurthersubdi-

videdintosegmentsofdifferentcolor.Foreachconnectedsmooth

region,wefindalltheconnectedsegmentsthatbelongtodifferent

colorclassesandcomputetheaveragecolorofeachsegment.Re-

callthattheACAprovidesslowlyvaryingcolor.Wethenmerge

thesegmentswhosecolorsaresimilar.Thecomparisonisper-

formedinLabcolorspace;thethresholdissetat10%ofthedis-

tancerange.Fortheremainingsegments,wecomputetheaverage

colordifferenceacrossthecommonborder,andmergethemifitis

belowagiventhreshold.Finally,smallcolorregionsneighboring

non-smoothtextureregionsareconsideredinthenextstep.

Alltheothertexturedregions(“horizontal,”“vertical,”and

“complex”regions,aswellsmallborderregionsfromtheprevi-

ousstep)arethenconsideredtogether.Weapplyaregionmerging

algorithmbasedontwotexturefeatures:thegrayscaletextureclas-

sificationobtainedintheprevioussectionandthecolorfeatures

presentedinSection2.Thelatterconsistofthedominantcolors

andtheirfrequenciescomputedinaa58a68a67a9a60a69a58a68a67window.Foreach

pairofpixels,wecomputethecolorfeaturedifferenceaccording

totheOCCDcriteriondescribedinSection2,andmergethemif

itisbelowagiventhreshold.Thethresholdishigherifthepixels

belongtothesametextureclass,andloweriftheybelongtodif-

ferenttextureclasses.ResultsareshowninFig.2(d).Eachregion

(a)OriginalColorImage(b)ColorSegmentation(ACA)(c)TextureSegmentation

(d)CrudeSegmentation(e)FinalSegmentation(f)FinalSegmentation(onoriginalimage)

Fig.2.ColorandTextureImageSegmentation(a,b,d,e,fshownincolor)

inthefigureispaintedwithitsaveragecolor.

Finally,weadjustthesegmentbordersusingcolorinforma-

tion.Thatis,foreachpixelalongtheborderofthecrudeseg-

mentation(Fig.2(d),wecomparethecolorprovidedbytheACA

algorithmwiththeaveragecolorofthesegmentineithersideof

theborderandmoveittothesidewhoseaveragecoloritisclosest

to.Thissimpleapproachworksverywell,providedtheaverage

colorsofthetwoadjacentregionsarequitedifferent.Iftheaver-

agecolorsofthetworegionsareveryclose,thentheadjustmentis

notperformed.ThefinalresultisshowninFig.2(e)and(f).

5.REFERENCES

[1]Y.Rui,T.S.Huang,S.-F.Chang,“Imageretrieval:Cur-

renttechniques,promisingdirectionsandopenissues,”

J.Vis.Comm.Im.Repr.,v.10,p.39–62,Mar.1999.

[2]W.M.Smeulders,etal.,“Content-basedimageretrievalat

theendoftheearlyyears,”IEEETr.PAMI,v.22,p.1349–

1379,Dec.2000.

[3]B.S.Manjunath,etal.,“Colorandtexturedescriptors,”IEEE

Tr.CSVT,p.703–715,June2001.

[4]A.Kundu,J.-L.Chen,“TextureclassificationusingQMF

bank-basedsubbanddecomposition,”CVGIP,GMIP,v.54,

p.369–384,Sept.1992.

[5]T.Chang,C.-C.J.Kuo,“Textureanalysisandclassification

withtree-structuredwavelettransform,”IEEETr.IP,v.2,

p.429–441,Oct.1993.

[6]M.Unser,“Textureclassificationandsegmentationusing

waveletframes,”IEEETr.IP,v.4,p.1549–1560,Nov.1995.

[7]T.Randen,J.H.Husoy,“Texturesegmentationusingfilters

withoptimizedenergyseparation,”IEEETr.IP,v.8,p.571–

582,Apr.1999.

[8]T.N.Pappas,“Anadaptiveclusteringalgorithmforimage

segmentation,”IEEETr.SP,v.40,p.901–914,Apr.1992.

[9]M.M.Chang,M.I.Sezan,A.M.Tekalp,“AdaptiveBayesian

segmentationofcolorimages,”JEI,p.404–414,Oct.1994.

[10]D.Comaniciu,P.Meer,“Robustanalysisoffeaturespaces:

Colorimagesegmentation,”CVPR,June1997,p.750–755.

[11]W.Y.Ma,Y.Deng,B.S.Manjunath,“Toolsfortexture/color

basedsearchofimages,”HumanVisionandElectronicImag-

ingII,Feb.1997,Proc.SPIE,Vol.3016,p.496–507.

[12]S.Belongie,etal.,“Color-andtexture-basedimagesegmen-

tationusingEManditsapplicationtocontentbasedimage

retrieval,”ICCV,1998,p.675–682.

[13]Y.Deng,B.S.Manjunath,“Unsupervisedsegmentationof

color-textureregionsinimagesandvideo,”IEEETr.PAMI,

v.23,p.800–810,Aug.2001.

[14]A.Cohen,I.Daubechies,J.C.Feauveau,“Biorthogonal

basesofcompactlysupportedwavelets,”Commun.Pure

Appl.Math.,v.45,p.485–560,1992.

[15]A.Mojsilovic,B.Rogowitz,“Capturingimagesemantics

withlow-leveldescriptors,”ICIP,Oct.2001,p.18–21.

[16]A.Mojsilovi′c,etal.,“Matchingandretrievalbasedonthe

vocabularyandgrammarofcolorpatterns,”IEEETr.IP,v.1,

p.38–54,Jan.2000.

[17]G.Derefeldt,T.Swartling,“Colorconceptretrievalbyfree

colornaming,”Displays,v.16,p.69–77,1995.

[18]S.N.Yendrikhovskij,“Computingcolorcategories,”Hu-

manVisionandElectronicImagingV,Jan.2000,Proc.SPIE

Vol.3959.

[19]A.Mojsilovi′c,J.Hu,E.Soljanin,“Extractionofperceptu-

allyimportantcolorsandsimilaritymeasurementforimage

matching,retrieval,andanalysis,”IEEETr.IP,Toappear.

[20]B.S.Manjunath,W.Y.Ma,“Texturefeaturesforbrowsing

andretrievalofimagedata,”IEEETr.PAMI,v.18,p.837–

842,Aug.1996.

[21]J.R.Bergen,E.H.Adelson,“Visualtexturesegmentation

basedonenergymeasures,”JOSAA,v.3,p.99–,1986.

[22]M.R.Turner,“TexturediscriminationbyGaborfunctions,”

Biol.Cybern.,v.55,p.71–82,1986.

[23]J.Malik,P.Perona,“Preattentivetexturediscriminationwith

earlyvisionmechanisms,”JOSAA,v.7,p.923–932,1990.

[24]E.P.Simoncelli,W.T.Freeman,“Thesteerablepyramid:A

flexiblearchitectureformulti-scalederivativecomputation,”

ICIP,vol.III,Oct.1995,p.444–447.

献花(0)
+1
(本文系学海无涯GL首藏)