脱硝系统催化剂积灰严重,脱硝阻力增加,最严重时阻力达800Pa,超过正常值200Pa。 在负荷低于200MW以下时,脱硝入口烟气温度低于300℃,由于脱硝系统逻辑设计不合理,脱硝无法自动停运,因此在监视不到位的情况下,脱硝依然运行。此时,由于烟温低,催化剂活性低导致与氨气反应的效果差,氨气逃逸率高,硫酸氢氨形成量增加,硫酸氢氨沉积在催化剂表面,在空气预热器换热管上冷凝析出晶体物质,与烟尘粘结一起沉积,降低了催化剂的活性并影响催化剂寿命,增大了空预器的换热阻力并增加了堵塞、腐蚀的风险。 在调整喷氨流量时氨气流量波动大极易造成喷氨流量快速增加,使得空氨比快速升高,导致脱硝跳闸,严重影响脱硝系统的正常运行并降低脱硝的投运率和安全性。 在运行中为控制脱硝效率,使得脱硝出口NOx含量远远低于国家标准,使得氨气消耗量大,增加了脱硝运行的费用,降低运行经济性。 三、原因分析 针对暴露出的问题,组织相关专业人员,进行了详细的分析,具体原因如下: 脱硝系统表计指示不准确,是由于烟尘大导致采样管路堵塞造成;脱硝系统阻力大,主要是由于烟气含尘量增加后,声波吹灰器吹灰时间设置不合理造成(原设置时间为每300秒吹5秒);系统逻辑设置不合理,该文原载于中国社会科学院文献信息中心主办的《环球市场信息导报》杂志http://www.总第522期2013年第39期-----转载须注名来源人为控制因素多,技术防控手段欠缺;氨气流量波动是由于供氨压力不稳定加之调门特性差造成;氨液消耗量大,主要原因为原采用的恒效率控制方式不合理,脱硝出口NOX含量低于国家标准和脱硝入口NOX含量较高造成的(设计脱硝入口NOX含量为450mg/Nm3,实际运行值为550~650 mg/Nm3)。 四、实施对策 解决脱硝CMS表计频繁故障。首先针对实际运行中烟尘含量大易造成表管堵塞的问题,将原设计的每四小时反吹一次,修改为每两小时反吹一次,将反吹压力由原来的0.2MPa修改为0.4MPa。再将表计的定期标定时间由原来的两周一次改为一周一次,并加大对表计的定期维护工作,对氨逃逸率每天进行清理,以保证其透光率和表计的正常指示。 优化吹灰解决烟尘量大导致催化效率下降及阻力大的问题。认真执行检修工作,要求对脱硝催化剂做到逢停必检,重点是检查催化剂积灰情况、声波吹灰器膜片及喷嘴堵塞磨损情况,并及时进行修复和清理;对吹灰器程控运行方式进行优化,将原来的每300秒吹5秒修改为每140秒吹10秒,将吹灰压力由原来的0.4MPa调整为0.6MPa。 解决氨气流量波动问题。首先对氨气蒸发槽蒸汽调门和氨气调门进行解体检查和更换,确保调门线性正常,再对自动调节装置进行调整,由原来的根据蒸发槽出口压力调节改为根据SCR区喷氨调门前压力调整,从而保证了喷氨压力的稳定。
来源:环球市场信息导报
|
|