rtc-sysfs.c这个部分主要是有关sysfs的操作。在rtc_device_register函数中,rtc_sysfs_add_device(rtc);完成sys的操作。 void rtc_sysfs_add_device(struct rtc_device *rtc) { int err; /* not all RTCs support both alarms and wakeup */ if (!rtc_does_wakealarm(rtc)) return; err = device_create_file(&rtc->dev, &dev_attr_wakealarm); if (err) dev_err(rtc->dev.parent, "failed to create alarm attribute, %d\n", err); } rtc_init函数中初始化sys。 void __init rtc_sysfs_init(struct class *rtc_class) { rtc_class->dev_attrs = rtc_attrs; } rtc_attrs设备属性组如下: static struct device_attribute rtc_attrs[] = { __ATTR(name, S_IRUGO, rtc_sysfs_show_name, NULL), __ATTR(date, S_IRUGO, rtc_sysfs_show_date, NULL), __ATTR(time, S_IRUGO, rtc_sysfs_show_time, NULL), __ATTR(since_epoch, S_IRUGO, rtc_sysfs_show_since_epoch, NULL), __ATTR(max_user_freq, S_IRUGO | S_IWUSR, rtc_sysfs_show_max_user_freq, rtc_sysfs_set_max_user_freq), __ATTR(hctosys, S_IRUGO, rtc_sysfs_show_hctosys, NULL), { }, }; 这个属性组是在class.c的模块初始化函数中,由rtc_sysfs_init函数赋值给 rtc_class->dev_attrs的, 以后属于这个类的设备都会有这些属性。但是我们知道要想一个设备结构拥有一种属性,必须调用device_create_file,这样才会使这个属性出现在sysfs相关设备目录里。但是在这里的代码中只是给这个类的dev_attrs域赋值了这个属性组指针,而没有调用 device_create_file。我原来以为是在rtc_device_resgister函数中由rtc_sysfs_add_device完成这个工作,但是这个函数只是给设备添加了闹钟属性,并没有处理这个属性组。最后发现这个工作是由device_register来完成的: device_register调用device_add device_add调用device_add_attrs device_add_attrs调用device_add_attributes device_add_attributes调用device_create_file来完成设备的属性设置。 设置完属性后,在/sys/class/rtc/rtc(n)的目录下就会出现name、date、time、since_epoch、max_user_freq和hctosys等文件,用户读这些文件的时候就会调用相应的函数。如读取name文件,就会调用rtc_sysfs_show_name函数,这个函数也是在rtc-sysfs.c中实现的,作用是读取并显示时间。 /** NOTE: RTC times displayed in sysfs use the RTC's timezone. That's * ideally UTC. However, PCs that also boot to MS-Windows normally use * the local time and change to match daylight savings time. That affects * attributes including date, time, since_epoch, and wakealarm. */ static ssize_t rtc_sysfs_show_name(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%s\n", to_rtc_device(dev)->name); } static ssize_t rtc_sysfs_show_date(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t retval; struct rtc_time tm; retval = rtc_read_time(to_rtc_device(dev), &tm); if (retval == 0) { retval = sprintf(buf, "%04d-%02d-%02d\n", tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday); } return retval; } static ssize_t rtc_sysfs_show_time(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t retval; struct rtc_time tm; retval = rtc_read_time(to_rtc_device(dev), &tm); if (retval == 0) { retval = sprintf(buf, "%02d:%02d:%02d\n", tm.tm_hour, tm.tm_min, tm.tm_sec); } return retval; } static ssize_t rtc_sysfs_show_since_epoch(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t retval; struct rtc_time tm; retval = rtc_read_time(to_rtc_device(dev), &tm); if (retval == 0) { unsigned long time; rtc_tm_to_time(&tm, &time); retval = sprintf(buf, "%lu\n", time); } return retval; } static ssize_t rtc_sysfs_show_max_user_freq(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", to_rtc_device(dev)->max_user_freq); } static ssize_t rtc_sysfs_set_max_user_freq(struct device *dev, struct device_attribute *attr, const char *buf, size_t n) { struct rtc_device *rtc = to_rtc_device(dev); unsigned long val = simple_strtoul(buf, NULL, 0); if (val >= 4096 || val == 0) return -EINVAL; rtc->max_user_freq = (int)val; return n; } static ssize_t rtc_sysfs_show_hctosys(struct device *dev, struct device_attribute *attr, char *buf) { #ifdef CONFIG_RTC_HCTOSYS_DEVICE if (rtc_hctosys_ret == 0 && strcmp(dev_name(&to_rtc_device(dev)->dev), CONFIG_RTC_HCTOSYS_DEVICE) == 0) return sprintf(buf, "1\n"); else #endif return sprintf(buf, "0\n"); } rtc-proc.c这个文件提供RTC的proc文件系统接口。proc文件系统是软件创建的文件系统,内核通过他向外界导出信息。 在第一份部分的rtc_device_register函数中调用rtc_proc_add_device(rtc);,函数主要功能就是增加proc文件系统的内容,该函数具体内容如下: void rtc_proc_add_device(struct rtc_device *rtc) { if (rtc->id == 0) proc_create_data("driver/rtc", 0, NULL, &rtc_proc_fops, rtc); //rtc_proc_fops在下面讲述 } 他主要调用了proc_create_data。proc_create_data完成创建文件节点的作用,并将文件的操作函数与节点联系起来。调用这个函数后,在/proc/driver目录下就会有一个文件rtc,应用程序打开这个文件就会调用rtc_proc_open函数。 //以下函数在rtc_device_unregister()中调用 void rtc_proc_del_device(struct rtc_device *rtc) { if (rtc->id == 0) remove_proc_entry("driver/rtc", NULL); } 下面的每一个文件都绑定一个函数,当用户读取这个文件的时候,这些函数会向文件写入信息: static const struct file_operations rtc_proc_fops = { .open = rtc_proc_open, .read = seq_read, .llseek = seq_lseek, .release = rtc_proc_release, }; static int rtc_proc_open(struct inode *inode, struct file *file) { int ret; struct rtc_device *rtc = PDE(inode)->data; if (!try_module_get(THIS_MODULE)) return -ENODEV; ret = single_open(file, rtc_proc_show, rtc); //rtc_proc_show接下来讲述 if (ret) module_put(THIS_MODULE); return ret; } 我们知道一个proc的文件必须与一个操作函数组成一个proc入口项,这个文件才能正常工作。这个函数最主要作用就是调用single_open,创建一个proc文件入口项,使其操作函数是rtc_proc_show,并初始化seq_file接口。rtc_proc_show函数如下定义: static int rtc_proc_show(struct seq_file *seq, void *offset) { int err; struct rtc_device *rtc = seq->private; const struct rtc_class_ops *ops = rtc->ops; struct rtc_wkalrm alrm; struct rtc_time tm; err = rtc_read_time(rtc, &tm); if (err == 0) { seq_printf(seq, "rtc_time\t: %02d:%02d:%02d\n" "rtc_date\t: %04d-%02d-%02d\n", tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday); } err = rtc_read_alarm(rtc, &alrm); if (err == 0) { seq_printf(seq, "alrm_time\t: "); if ((unsigned int)alrm.time.tm_hour <= 24) seq_printf(seq, "%02d:", alrm.time.tm_hour); else seq_printf(seq, "**:"); if ((unsigned int)alrm.time.tm_min <= 59) seq_printf(seq, "%02d:", alrm.time.tm_min); else seq_printf(seq, "**:"); if ((unsigned int)alrm.time.tm_sec <= 59) seq_printf(seq, "%02d\n", alrm.time.tm_sec); else seq_printf(seq, "**\n"); seq_printf(seq, "alrm_date\t: "); if ((unsigned int)alrm.time.tm_year <= 200) seq_printf(seq, "%04d-", alrm.time.tm_year + 1900); else seq_printf(seq, "****-"); if ((unsigned int)alrm.time.tm_mon <= 11) seq_printf(seq, "%02d-", alrm.time.tm_mon + 1); else seq_printf(seq, "**-"); if (alrm.time.tm_mday && (unsigned int)alrm.time.tm_mday <= 31) seq_printf(seq, "%02d\n", alrm.time.tm_mday); else seq_printf(seq, "**\n"); seq_printf(seq, "alarm_IRQ\t: %s\n", alrm.enabled ? "yes" : "no"); seq_printf(seq, "alrm_pending\t: %s\n", alrm.pending ? "yes" : "no"); seq_printf(seq, "update IRQ enabled\t: %s\n", (rtc->uie_rtctimer.enabled) ? "yes" : "no"); seq_printf(seq, "periodic IRQ enabled\t: %s\n", (rtc->pie_enabled) ? "yes" : "no"); seq_printf(seq, "periodic IRQ frequency\t: %d\n", rtc->irq_freq); seq_printf(seq, "max user IRQ frequency\t: %d\n", rtc->max_user_freq); } seq_printf(seq, "24hr\t\t: yes\n"); if (ops->proc) ops->proc(rtc->dev.parent, seq); return 0; } 这个函数就是最后给用户显示信息的函数了,可以看出他通过调用rtc_deivce中的操作函数读取时间、日期和一些其他的信息显示给用户。 RTC核心使底层硬件对用户来说是透明的,并且减少了编写驱动程序的工作量。RTC新的驱动接口提供了更多的功能,使系统可以同时存在多个RTC。 /dev,sysfs,proc这三种机制的实现使得应用程序能灵活的使用RTC。RTC核心代码的组织方式值得学习,不同功能的代码放在不同的文件中,简单明了。 |
|
来自: dwlinux_gs > 《RTC驱动分析》