//数值计算实验 数值积分
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <gsl/gsl_integration.h>
using namespace std;
//被积函数
double f( double x)
{
//为便于调试,先弄个有原函数的 y = x^2 + x^3 - 2*x^4
return x*x + x*x*x - 2*x*x*x*x;
}
//被积函数 给gsl用的
double g( double x, void * params)
{
return f(x);
}
//原函数 用于调试算法
double F( double x)
{
return (x*x*x)/3.0 + (x*x*x*x)/4.0 - 0.4*x*x*x*x*x;
}
//输出被积函数的精确解
double Jinque( const double a, const double b)
{
return (F(b) - F(a));
}
//梯形法 求函数在[a,b]上的定积分,积分区间分为n部分
double Tixing( const double & a, const double & b, const int & n)
{
double sum = 0.0;
double gaps = (b-a)/ double (n); //每个间隔的长度
for ( int i = 0; i < n; i++)
{
sum += (gaps/2.0) * (f(a + i*gaps) + f(a + (i+1)*gaps));
}
return sum;
}
//抛物线法
double Paowuxian( const double & a, const double & b, const int & n)
{
double sum = 0.0;
double gaps = (b-a)/ double (n); //每个间隔的长度
double h = gaps/2.0;
for ( int i = 0; i < n; i++)
{
sum += (h/3.0) * (f(a + i*gaps) + f(a + (i+1)*gaps) + 4.0*f((2*a + (2*i+1)*gaps)/2.0));
}
return sum;
}
//柯特斯公式
double Cotes( const double & a, const double & b, const int & n)
{
double sum = 0.0;
double gaps = (b-a)/ double (n); //每个间隔的长度
double h = gaps/2.0;
for ( int i = 0; i < n; i++)
{
sum += (h/45.0) * (7.0*f(a + i*gaps) +
32.0*f(a + i*gaps + 0.25*gaps) +
12.0*f(a + i*gaps + 0.5*gaps) +
32.0*f(a + i*gaps + 0.75*gaps) +
7.0*f(a + (i+1)*gaps));
}
return sum;
}
//gsl解法,参考gsl文档
double gslIntegration( double & a, double & b)
{
gsl_function gf;
gf.function = g;
double r, er;
unsigned int n;
gsl_integration_qng(&gf, a, b, 1e-10, 1e-10, &r, &er, &n);
return r;
}
int main()
{
double a, b;
int n;
cout<< "请输入积分区间:" <<endl;
cout<< "a = " ;
cin>>a;
cout<< "b = " ;
cin>>b;
cout<< "请输入分割被积区间的数量:" ;
cin>>n;
if (a > b || n <= 1)
{
cout<< "输入错误!" <<endl;
exit (1);
}
//设置输出精度
cout.precision(10);
//输出精确解
double result = Jinque(a, b);
cout<< "函数在[" <<a<< "," <<b<< "]上的定积分为:" <<result<<endl;
//梯形法
double result1 = Tixing(a, b, n);
cout<< "梯形法:" <<endl;
cout<< "函数在[" <<a<< "," <<b<< "]上的定积分为:" <<result1<< " 相对误差为:"
<< abs ((result1 - result)/result)*100<< "%" <<endl;
//抛物线法
double result2 = Paowuxian(a, b, n);
cout<< "抛物线法:" <<endl;
cout<< "函数在[" <<a<< "," <<b<< "]上的定积分为:" <<result2<< " 相对误差为:"
<< abs ((result2 - result)/result)*100<< "%" <<endl;
//柯特斯公式法
double result3 = Cotes(a, b, n);
cout<< "柯特斯法:" <<endl;
cout<< "函数在[" <<a<< "," <<b<< "]上的定积分为:" <<result3<< " 相对误差为:"
<< abs ((result3 - result)/result)*100<< "%" <<endl;
//调用gsl函数
double result4 = gslIntegration(a, b);
cout<< "gsl函数结果:" <<endl;
cout<< "函数在[" <<a<< "," <<b<< "]上的定积分为:" <<result4<< " 相对误差为:"
<< abs ((result4 - result)/result)*100<< "%" <<endl;
return 0;
}
|