柯西不等式
柯西-施瓦茨不等式,又称施瓦茨不等式或柯西-布尼亚科夫斯基-施瓦茨不等式,是一条很多场合都用得上的不等式;例如线性代数的矢量,数学分析的无穷级数和乘积的积分,和概率论的方差和协方差。不等式以奥古斯丁·路易·柯西(Augustin Louis Cauchy),赫尔曼·阿曼杜斯·施瓦茨(Hermann Amandus Schwarz),和维克托·雅科夫列维奇·布尼亚科夫斯基(Виктор Яковлевич Буняковский)命名。 2 证法柯西不等式的一般证法有以下几种: ■①Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2. 我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2) 则我们知道恒有 f(x) ≥ 0. 用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0. 于是移项得到结论。 ■②用向量来证. m=(a1,a2......an) n=(b1,b2......bn) mn=a1b1+a2b2+......+anbn=(a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+......+bn^2)^(1/2)乘以cosX. 因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+.....+bn^2)^(1/2) 这就证明了不等式. 柯西不等式还有很多种,这里只取两种较常用的证法. 3 应用柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。 ■巧拆常数: 例:设a、b、c 为正数且各不相等。 求证: 2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c) 分析:∵a 、b 、c 均为正数 ∴为证结论正确只需证:2*(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9 而2(a+b+c)=(a+b)+(a+c)+(c+b) 又 9=(1+1+1)(1+1+1) 证明:Θ2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)(1+1+1)=9 又 a、b 、c 各不相等,故等号不能成立 ∴原不等式成立。 像这样的例子还有很多,词条里不再一一列举,大家可以在参考资料里找到柯西不等式的证明及应用的具体文献. 4 其他5 柯西
1805年柯西进入高等工业学校学习,安培是他的一位老师。他原来打算成为土木工程师,但是他的身体很差,他的朋友拉格朗日和拉普拉斯劝他转向搞不要求身体特别好的纯粹数学。在大学毕业后当土木工程师,因数学上的成就被推荐为科学院院士,同时任工科大学教授。后来在巴黎大学任教授,一直到逝世。他信仰罗马天主教,追随保皇党,终生坚守气节。他在学术上成果相当多,他的研究是多方面的。在代数学上,他有行列式论和群论的创始性的功绩;在理论物理学、光学、弹性理论等方面,也有显著的贡献。他的特长是在分析学方面,他对微积分给出了严密的基础。他还证明了复变函数论的主要定理以及在实变数和复变数的情况下微分方程解的存在定理,这些都是很重要的。他的全集26卷,仅次于欧拉,居第二位。 柯西是历史上有数的大分析学家之一。幼年时在父亲的教导下学习数学。拉格朗日、拉普拉斯常和他的父亲交往,曾预言柯西日后必成大器。1815年柯西入理工科大学,1816年成为那里的教授。1830年法王查理十世(他封柯西为男爵)被逐,路易·菲利普称帝。柯西由于拒绝作效忠宣誓,被革去职位,出走国外。 1838年柯西返回法国,法兰西学院给他提供了一个要职,但是宣誓的要求仍然成为接纳他的障碍。1848年路易。菲利普君主政体被推翻,拿破仑一世的侄子路易·拿破仑掌了权成立了法兰西第二共和国,宣誓的规定被废除,柯西终于成为理工科大学的教授。1852年发生政变,共和国又变成帝国,恢复了宣誓仪式,唯独柯西和阿拉果(D.Arago,1786-1853,法国物理学家)可以免除。 1821年,在拉普拉斯和泊松的鼓励下,柯西出版了《分析教程》、《无穷小计算讲义》、《无穷小计算在几何中的应用》这几部划时代的著作。他给出了分析学一系列基本概念的严格定义。柯西的极限定义至今还在普遍使用,连续、导数、微分、积分、无穷级数的和等概念也建立在较为坚实的基础上。 现今所谓的柯西定义或ε-δ方法是半个世纪后经过维尔斯特拉斯的加工才完成的。柯西时代实数的严格理论还未建立起来,因此极限理论也就不可能完成。柯西在1821年提出ε方法(后来又改成δ),即所谓极限概念的算术化,把整个极限过程用一系列不等式来刻画,使无穷的运算化成一系列不等式的推导。后来维尔斯特拉斯将ε和δ联系起来,完成了ε-δ方法。 他在纯数学和应用数学的功力是相当深厚的,很多数学的定理和公式也都以他的名字来称呼,如柯西不等式、柯西积分公式...在数学写作上,他是被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,其中有些还是经典之作,不过并不是他所有的创作质量都很高,因此他还曾被人批评高产而轻率,这点倒是与数学王子相反,据说,法国科学院''会刊''创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页,所以,柯西较长的论文只得投稿到其他地方。 柯西在代数学、几何学、误差理论以及天体力学、光学、弹性力学诸方面都有出色的工作。特别是,他弄清了弹性理论的基本数学结构,为弹性力学奠定了严格的理论基础。 |
|