分享

转发/数理方程和物理学,天体物理学宇宙物理学研究概论(方瑞达著作节录,双语版)

 昵称20757147 2015-02-12
数理方程,数理逻辑,集化数学和物理学,天体物理学宇宙物理学基本研究概论(数学,数理逻辑,物理学,天文学,宇宙学研究通论)《  节选,片段》Fangruida.


【在自然科学领域到工程技术研究,数学,数理方法数理方程极端重要。没有或缺乏严谨缜密的数理推到计算数学分析,任何科学研究都会缺乏严密性精确性和通解性。现代自然科学和工程技术日益发达,日益进入严密严谨数字化的高智慧超智慧的信息时代信息社会,数学,数理逻辑,数理方程,数学物理方法,数学-物理推导,数学计算特别重要。尽管现在大量采用计算机模拟,计算机仿真,计算机计算软件等,但是数学,数学分析,数理方程,物理方程,物理公式,天体力学公式,大型工程设计计算,等等也必须具备除机算之外的人工计算-手算,数学公式,数理方程,数理定理,大型工程设计计算(例如,宇航飞行计算,航母结构设计计算,大坝,超高层建筑结构设计,导弹结构设计计算等等,虽然有不少顶尖的数学软件和计算软件大量应用,但是科学家和工程师不仅要具备计算软件熟练应用的能力,而且也要有结实的数理基础,逻辑分析计算的能力和相当的水准,否则,难以胜任数理方程数序公式物理方程的计算求导。计算失误将是严重可怕的危险后果,可想而知。譬如,飞船设计,航母设计,大坝设计,超高层建筑结构设计计算,潜艇结构设计,工程设计等等一旦计算出现丝毫差错,差值毫厘,失之千里。后果将是不堪设想的。所以,科学家,工程师一定要掌握好数理计算特别是数学计算推到求解的基本功。包括计算机计算和手算复核校验以及手算的基本能力,不断专研和提高数学水平,不断充电完善自己的知识结构和综合能力)。当然,计算机数值计算现在通用于大型复杂的科学计算和工程计算中,已经成为现代数学和计算机科学日益密切结合的重要学科,以后将成为主导性很明显,但计算仍然需要基本的数学能力和数学水平,二者并不绝对排斥,各有优势,机算的效力和作用显然超过手算。这里主要强调高等数学的学习掌握十分重要。】

1.基础数学和现代数学发展和分支,表示自然客观现实的数学进一步升华


2.数理逻辑,形式逻辑和复合集化逻辑,辩证逻辑之关系

3.当代物理学,天文学,宇宙学以及相关学科的进展和研究

4.数学物理方程的建立和推导,计算机数理方程的建模和计算

5.数学公式,数学语言和数理语言以及物理方程

6.数学物理方程和现代科学研究实验的双向结合过程,重要数理公式数理定理的建立和验证
7.现代自然科学研究的基础和突破极限

8.人类认知和科学实验过程的数值分析,模拟分析,仿真分析

9.工程技术,应用科学领域的数学物理方程,数理公式

10. 新的数学物理计算软件的开发,计算数学的软件扩限

11. 大型 工程技术设计计算高级软件的开发

12.  新时代科技飞速发展对于人类极限认识的挑战

13.  物理学,天文学,宇宙学,数学,数理逻辑学的发展前沿和传统模式的探讨。



 


常用软件主要为Matlab,和Mathematica和Maple等数值计算软件,这些软件提供了大量求解常见计算物理问题的工具


积分的计算 数值积分或蒙特卡洛积分 求质心位置、场的叠加
常微分方程的求解 龙格-库塔法(初值问题)、打靶法(边值问题)[3] 经典力学
偏微分方程的求解 静场问题、对流问题  广泛应用于  物理,力学,天文学等领域。
矩阵的特征值和特征向量的求解 、密度矩阵重整化群 量子力学系统中能量本征值和本征态的求解
大量系列随机事件的相互作用 蒙特卡罗方法 分子动力学、等离子体的动力学方程

1900年10月,马克斯·普朗克将维恩定律加以改良,又将玻尔兹曼熵公式(Boltzmann's entropy formula)通过将物体中的原子看作微小的量子谐振子,他不得不假设这些量子谐振子的总能量不是连续的,即总能量只能是离散的数值(经典物理学的观点恰好相反):

E_n=nh\nu
这里, n 是一个整数,h 是普朗克常数。


爱因斯坦
承认时空的相对性导致了几个必然的推论。一是运动的物体会在其运动的方向上长度收缩。二是运动的物体会经历时间膨胀。也就是说,一个高速运动的钟表要比静止的同样钟表走得慢。三是能量和质量其实是一回事,可以相互转换。用公式表达出来,就是E = mc2。因此,对于任何物体来説,其质量会随着其速度的增加而增加。

数学物理公式,数学物理定理都是科学研究等方面必须使用的,例如数学建模,数学大量复杂计算等等。薛定谔方程,普朗克方程,爱因斯坦方程,狄拉克方程,等有很多,包括力学,天体力学等方面计算数学,数学和物理学的紧密巧妙结合和推演推导。数学是物理学的极其重要的基础,没有数学物理方程建立,物理学难以支撑其结构体系。
对一个物理问题的处理,通常需要三个步骤: 一、利用物理定律将物理问题翻译成数学问题; 二、解该数学问题; 三、将所得的数学结果翻译成物理,即讨论所得结果的物理意义。

微分方程的解算:很多物理问题,比如在经典力学和量子力学中求解运动方程。
常微分方程的求解
偏微分方程求解


复变函数论
场,引力:场是现代物理的主要研究对象。电动力学研究电磁场;广义相对论研究引力场;规范场论研究规范场。


对称性的研究:对称性是物理中的重要概念。它是守恒定律的关键所在。
群论

作用量(action)理论
变分法
泛函分析等。

一个单独粒子运动于位势 V(x)\,\! 中的含时薛定谔方程为

 - \frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x,\,t)+V(x)\Psi(x,\,t)=i\hbar\frac{\partial}{\partial t}\Psi(x,\,t)\,\! ;(1)
其中,m\,\! 是质量,x\,\! 是位置,\Psi(x,\,t)\,\! 是相依于时间 t\,\! 的波函数,\hbar\,\! 是约化普朗克常数,V(x)\,\! 是位势。

类似地,在三维空间里,一个单独粒子运动于位势 V(\mathbf{r})\,\! 中的含时薛定谔方程为

 薛定谔方程(Schrodinger equation)又称薛定谔波动方程(Schrodinger wave equation)在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率幅,态函数)来确定,因此波函数成为量子力学研究的主要对象。


含时薛定谔方程描述物理系统随时间演化,其最广义形式为:

\hat H \Psi=i \hbar \frac{\partial}{\partial t}\Psi ;
其中,\hat{H}  是表征波函数总能量的哈密顿算符,\Psi 是物理系统的波函数,i 是虚数单位,\hbar 是约化普朗克常数,\partial/\partial t 是对于时间 t 的偏微分。


普朗克方程
福克-普朗克方程(Fokker–Planck equation)描述粒子在位能场中受到随机力后,随时间演化的位置或是速度的分布函数  。

一维 x方向上,福克-普朗克方程有两个参数,一是拖曳参数 D1(x,t),另一是扩散 D2(x,t)

\frac{\partial}{\partial t}f(x,t)=-\frac{\partial}{\partial x}\left[ D_{1}(x,t)f(x,t)\right] +\frac{\partial^2}{\partial x^2}\left[ D_{2}(x,t)f(x,t)\right]. 
在N 维空间中的福克-普朗克方程是

\frac{\partial f}{\partial t} = -\sum_{i=1}^N \frac{\partial}{\partial x_i} \left[ D_i^1(x_1, \ldots, x_N) f \right] + \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\partial^2}{\partial x_i \, \partial x_j} \left[ D_{ij}^2(x_1, \ldots, x_N) f \right], x_i 是第i维度的位置,此时 D^1为拖曳矢量,D^2为扩散张量。

在相当长的时期,数学和力学,物理学,天文学往往混合在一起,交织在一起。很多数学家往往就是物理学家,天文学家;很多物理学家,天文学家也是数学家。近代科学发展分化之后,分支越来越多越来越细,例如数学家又分很多分支,基础数学,应用数学,计算机数学等等,而物理学细化更多,实验物理学,理论物理学,应用物理学,高能物理学,天体物理学,地球物理学,生物物理学,计算物理学等等。但是,尽管如此细化,但又高度结合,进而产生新的分支,例如数理逻辑学,粒子物理学,行星物理学,医学物理学,量子物理学等等,不一而足。


阿基米德

阿基米德(Archimedes公元前287年—公元前212年),古希腊哲学家、数学家、物理学家。阿基米德曾说过:给我一个支点,我可以翘起地球。

高斯

数学天才──高斯(C.F. Gauss)

高斯是德国数学家、物理学家和天文学家。




牛顿牛顿

牛顿(Isaac Newton) 是英国较为著名的物理学家和数学学家。 

牛顿最卓越的数学成就是创立了微积分,此外对解析几何与综合几何都有比较显著的贡献。

牛顿有两句名言是大家所熟知的,“如果我比别人看得远些,那是因为我站在巨人们的肩上。”据说他还讲过:“我不知道世人对我怎么看;但在我自己看来就好像只是一个在海滨嬉戏的孩子,不时地为比别人找到一块光滑的卵石或一只更美丽的贝壳而感到高兴,而我面前的浩瀚的真理海洋,却还完全是个谜。”

莱布尼茨

戈特弗里德·威廉·凡·莱布尼茨(Gottfried Wilhelm von Leibniz,1646年7月1日~1716年11月14日)德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同为微积分的创建人。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不朽的贡献。

欧拉


笛卡尔

莱昂哈德·欧拉(Leonhard Euler,1707年4月5日~1783年9月18日)是瑞士数学家和物理学家。他被一些数学史学者称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯)。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在1694年给出)。他是把微积分应用于物理学的先驱者之一。

笛卡尔

勒奈·笛卡尔(Rene Descartes)。笛卡尔是伟大的哲学家、物理学家、数学家、生理学家。解析几何的创始人。笛卡尔是欧洲近代资产阶级哲学的奠基人之一,黑格尔称他为“现代哲学之父”。笛卡尔堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一。



新的世界展现在人类面前,无出其右,物理学,天文学,宇宙学等等将给我们提供大量的新的课题和求解方程。例如,混沌数学,集化数学,计算数学,月球天文学,月球物理学,月球生物学,星际物理学,星际物质物理学,星云物理学,星云化学,火星物理学,火星化学,火星地质学,火星地理学,火星地貌学,火星地质物理化学,月球地质物理化学,太阳系物理学,银河系物理学,粒子物理学,等等学科门类以及宇航飞行物理学,宇航飞行生物学,宇航飞行生物物理学,宇宙空间物理化学,等等将会不断涌现。随着时间的推移,人类将迎来新的崭新的自然世界。就像今天,世界各国大力发展开拓极地和宇宙空间,地球上有很多数学定理将会在宇宙中进一步得到新的验证或修正。对于人类来说,百年,500年,1000年,5000年,50000年已经是十分漫长了;而对于伟大的自然宇宙来说,简直是小巫见大巫,微不足道。几万年,几十万年,几百万年,何其短暂。从地球到月球充其量38万公里;从地球到火星也只有几十亿公里。宇宙的边际无边无际,何止万万亿光年,太阳年。现行的化学元素和已发现的基本粒子,显然并不是宇宙自然的全部,这也是显而易见的,无容置疑的科学事实。譬如,星际物质,暗物质,反物质,天体引力和巨大无比的引力场,星体大爆炸等等难以用已知的理论定理完整准确详尽说明和解释,就是明证。从这个意义上讲,新的重大发现和重大研究探索无疑会出现在人类历史长久的历史过程中,而绝不会减弱。

(节选未完,待续。由于篇幅过长,选编了其中节段,根据作者1986年时在法国和比利时所作原稿节录,原稿为中英文双语手稿,特此注明.)



Mathematical equations, mathematical logic, sets of mathematics and physics, space physics, astrophysics Introduction to basic research (mathematics, mathematical logic, physics, astronomy, cosmology General Theory) "excerpt, fragment"


[In the natural sciences to study engineering, mathematics, mathematical methods and mathematical equations is extremely important. Absence or lack of rigorous mathematical rigor pushed to calculate mathematical analysis, will lack any scientific rigor and accuracy through hydrolysis. Modern natural science and engineering technology increasingly developed, increasingly digitized into the tight rigorous ultra high intelligence intelligence information age of the information society, mathematics, mathematical logic, mathematical equations, Methods of Mathematical Physics, Mathematics - Physics derivation, math is particularly important. Although extensive use of computer simulation, computer simulation, computer software and other computing, but mathematics, mathematical analysis, mathematical equations, physics equations, physics formulas, equations of celestial mechanics, a large engineering design calculations, etc. In addition to the machine must have counted manual calculation - hand calculations, mathematical formulas, mathematical equations, mathematical theorem, a large engineering design calculations (eg, aerospace flight calculations, aircraft structural design calculations, dams, high-rise building structural design, structural design calculations missiles, etc., although there are no less top mathematical software and computational software large number of applications, but scientists and engineers have the ability not only to calculate skilled software applications, but also to have a strong mathematical foundation, ability and considerable level logic analysis and calculation, otherwise, could not do the mathematical equation order to calculate the number of physical equations derivation formula. miscalculation would be a serious risk of terrible consequences can be imagined. for example, the spacecraft design, aircraft design, dam design, high-rise building structural design calculations, submarine structure design, engineering etc. Once the calculation appear the slightest mistake, the difference between the least bit, Trinidad lost in. the consequences will be disastrous. Therefore, scientists, engineers must master the mathematical calculation in particular, pushed to solving math basic skills, including computer calculations and hand calculations review check and hand count of the basic ability to continuously improve specializes in mathematics and constantly improve their knowledge charging structure and comprehensive ability). Of course, the computer numerical now common in large, complex scientific computing and engineering calculations, has become an increasingly important discipline closely integrated modern mathematics and computer science, the future will become the dominant obvious, but still need to compute basic math skills and math level, they are not absolutely excluded, have their own advantages, efficacy and mechanism of action is clearly more than the hand count count. Here the main emphasis of the study and master mathematics is very important. ]

1. The foundation of modern mathematics and mathematical development and a branch of mathematics natural objective reality further distillation


2. mathematical logic, formal logic and complex set of logic, dialectical logic of relations

3. Progress and research of contemporary physics, astronomy, cosmology and related disciplines

4. establish and derive equations of mathematical physics, computer modeling and mathematical equations to calculate

5. mathematical formulas, mathematical language and mathematical language and physical equations

6. The process of two-way combination of modern mathematical physics equations and scientific experiments to establish and validate the important mathematical formulas and mathematical theorems
7. base and push the limits of modern natural science research

8. The value of human cognition and scientific experiment analysis, simulation analysis, simulation analysis

9. engineering, mathematical physics equations in the field of applied science, mathematical formulas

10. A new mathematical physics computing software development, computational mathematics software limit expansion

11. Large engineering design calculation Senior Software Development

12. The new era of rapid development of science and technology challenges to the limits of human understanding

13. In physics, the development of cutting-edge astronomy, cosmology, mathematics, mathematical logic, and to explore the traditional model.






Software used mainly for Matlab, Mathematica and Maple, etc. and numerical software, which provides a number of physical problems to solve common computing tools


Integral Monte Carlo calculation of numerical integration or integration requirements centroid location, superimposed field
ODEs Runge - Kutta method (initial value problem), shooting method (Boundary Value) [3] Classical Mechanics
Partial differential equations of static field problems, convection is widely used in physics, mechanics, astronomy, and other fields.
Eigenvalue and eigenvector matrix solving the density matrix renormalization group in quantum mechanical systems energy eigenvalues and eigenstates
Monte Carlo methods of molecular interaction of a large number of series of random events dynamics, plasma kinetic equation

October 1900, the Max Planck Wien's law will be improved, in turn Boltzmann's entropy formula (Boltzmann's entropy formula) by the object seen in the tiny atomic quantum harmonic oscillator, he had to assume that these quantum Oscillator total energy is not continuous, i.e., the total energy can only be discrete values (the opposite point of view of classical physics):

E_n = nh \ nu
Here, n is an integer, h is Planck's constant.


Einstein
Recognize the relativity of time and space led to several corollary. First, the movement of objects in the direction of its movement length contraction. The second is the movement of objects will experience time dilation. In other words, a high-speed movement of the watch is also watch more slowly than the rest. Third, energy and mass is one thing that can convert each other. Expressed with the formula is E = mc2. Thus, for any object, its mass will increase its speed increases.

Mathematical physics equations, mathematical physics theorem all aspects of scientific research must be used, such as mathematical modeling, mathematical, and so a large number of complex calculations. Schrodinger equation, Planck equation, Einstein equation, Dirac equation, and so there are many, including the terms of mechanics, celestial mechanics, computational mathematics, mathematics and physics and a unique combination of tightly deduction derivation. Mathematics is extremely important fundamental physics, there is no established mathematical physics equations, physics is difficult to support its architecture.
Treatment of a physical problem, usually requires three steps: First, use the laws of physics will translate into physical problems mathematical problem; two, the solution of the mathematical problem; three, will be translated into mathematical physics results obtained, namely to discuss the results of the physical significance.

Differential equation solver: a lot of physical problems, such as solving the equations of motion in classical mechanics and quantum mechanics.
Solving Ordinary Differential Equations
Partial Differential Equations


Complex function theory
Field, gravity: field is the main object of study of modern physics. Electrodynamics electromagnetic field; general relativity gravitational field research; gauge field theory gauge field research.


Symmetry Study: Symmetry is an important concept in physics. It is the law of conservation of the key.
Group Theory

ACTION (action) theory
Calculus of variations
Functional analysis and so on.

A single particle motion in the potential V (x) \, \! When the Schr?dinger equation containing

  - \ Frac {\ hbar ^ 2} {2m} \ frac {\ partial ^ 2} {\ partial x ^ 2} \ Psi (x, \, t) + V (x) \ Psi (x, \, t) = i \ hbar \ frac {\ partial} {\ partial t} \ Psi (x, \, t) \, \;! (1)
Where, m \, \! Is the quality, x \, \! Is the location, \ Psi (x, \, t) \, \! Is the wave function dependent on the time t \, \! A, \ hbar \, \! is the reduced Planck constant, V (x) \, \! is potential.

Similarly, in three-dimensional space, a single particle motion in the potential V (\ mathbf {r}) when \, \! The dependent Schr?dinger equation

  Schr?dinger equation (Schrodinger equation), also known as the Schr?dinger wave equation (Schrodinger wave equation) In quantum mechanics, the state of the system can not use mechanical quantity value (such as x) to determine, but to use the mechanical function of the amount Ψ (x, t ), that the wave function (also known as the probability amplitude, state function) to determine, and therefore become the main target of the wave function of quantum mechanics research.


Schr?dinger equation describes the evolution of a physical system containing over time, its most general form is:

\ hat H \ Psi = i \ hbar \ frac {\ partial} {\ partial t} \ Psi;
Which, \ hat {H} is the characterization of the total energy of the wave function of the Hamiltonian, \ Psi is the wave function of the physical system, i is the imaginary unit, \ hbar is the reduced Planck constant, \ partial / \ partial t is the partial derivative with respect to time t.


Planck equation
Fokker - Planck equation of the distribution function (Fokker-Planck equation) describes the potential energy of the particles by random forces in the field, the time evolution of the position or velocity.

One-dimensional x direction, Fokker - Planck equation has two parameters, one towing parameters D1 (x, t), the other is the proliferation of D2 (x, t)

\ frac {\ partial} {\ partial t} f (x, t) = - \ frac {\ partial} {\ partial x} \ left [D_ {1} (x, t) f (x, t) \ right ] + \ frac {\ partial ^ 2} {\ partial x ^ 2} \ left [D_ {2} (x, t) f (x, t) \ right].
Fork in the N-dimensional space - Planck equation is

\ frac {\ partial f} {\ partial t} = - \ sum_ {i = 1} ^ N \ frac {\ partial} {\ partial x_i} \ left [D_i ^ 1 (x_1, \ ldots, x_N) f \ right] + \ sum_ {i = 1} ^ {N} \ sum_ {j = 1} ^ {N} \ frac {\ partial ^ 2} {\ partial x_i \, \ partial x_j} \ left [D_ {ij} ^ 2 (x_1, \ ldots, x_N) f \ right], x_i is the i-dimensional position, this time as a drag vector D ^ 1, D ^ 2 is the diffusion tensor.

For a long period of time, mathematics and mechanics, physics, astronomy, often mixed together, intertwined. Many mathematicians, physicists often the astronomer; many physicists, astronomers also a mathematician. After differentiation of modern scientific development, more and more branches and more detailed, for example, was divided into many branches mathematician, basic mathematics, applied mathematics, computer mathematics, etc., and more refined physics, experimental physics, theoretical physics , applied physics, high-energy physics, astrophysics, geophysics, biophysics, computational physics and so on. However, in spite of refinement, but high degree of integration, and produce new branches, such as mathematical logic, particle physics, planetary physics, medical physics, quantum physics, and so forth.


Archimedes

Archimedes (Archimedes 287 BC - 212 BC), the ancient Greek philosopher, mathematician, physicist. Archimedes once said: Give me a fulcrum, I can tilt the Earth.

Gauss

── mathematical genius Gauss (C.F. Gauss)

Gauss was a German mathematician, physicist and astronomer.




Newton Newton

Newton (Isaac Newton) is more famous British physicist and mathematical scientists.

Newton's most remarkable achievement was the creation of mathematical calculus, analytic geometry and in addition on a comprehensive comparison of the geometry has a significant contribution.

Newton had a few words saying is known to everyone, "If I see far more than others, it is because I am standing on the shoulders of giants." It is said that he also talked about: "I do not know how to see the world for me; but in my own opinion just like a child playing at the seaside, from time to time than others to find a smooth pebble or a more beautiful shells and happy, but the truth of the vastness of the ocean in front of me, still entirely a mystery. "

Leibniz

Gottfried Wilhelm Leibniz van (Gottfried Wilhelm von Leibniz, 1646 年 7 1 ~ November 14, 1716) the most important German natural scientist, mathematician, physicist, history and philosopher, one of the world's rare scientific genius, and Newton (January 4, 1643 -1727 on March 31) the same as the founder of the calculus. He read books, studied Wikipedia, the scientific knowledge base to enrich the human made immortal contributions.

Euler


Descartes

Leonhard Euler (Leonhard Euler, 1707 年 4 月 5 日 ~ September 18, 1783) is a Swiss mathematician and physicist. He was known as one of a number of scholars on the history of mathematics history of the greatest mathematicians of two (the other was Carl Friedrich Gauss). Euler was the first to use the "function" to describe the expression contains various parameters of the person, such as: y = F (x) (defined function given by Leibniz in 1694). He was one of the pioneers of the calculus is applied physics.

Descartes

René Descartes (Rene Descartes). Descartes is a great philosopher, physicist, mathematician, physiologist. Founder of analytic geometry. Descartes was one of the founders of the modern European bourgeois philosophy, Hegel called him "the father of modern philosophy." One of the most influential 17th-century masters called Cartesian philosophy and the scientific community in Europe.



New World show in front of people, second to none, physics, astronomy, cosmology, etc. will provide us with a lot of new issues and solve the equations. For example, chaos mathematics, set of mathematics, computational mathematics, astronomy, the moon, the moon physics, biology Moon, interplanetary physics, physics of interstellar matter, nebula physics, chemistry Nebula, Mars physics, chemistry Mars, Mars geology, Mars geography, geomorphology Mars, Mars geology physical chemistry, physical chemistry lunar geology, solar physics, galactic physics, particle physics, etc. disciplines and aerospace flight physics, space flight biology, biophysics aerospace flight , space physics chemistry, etc. will continue to emerge. Over time, mankind will usher in a new brand new natural world. Like today, the world to develop and explore the polar space, there are a lot of mathematical theorems on the planet in the universe will further validate new or amended. For humans, a hundred years, 500 years, 1,000 years, 5,000 years, 50,000 years has been a very long; for great natural universe, it pales insignificant. Tens of thousands of years, tens of thousands of years, millions of years, so short. From the Earth to the Moon, at best, 380,000 km; from Earth to Mars, only several billion kilometers. Marginal boundless universe, far more than ten thousand trillion light years, the solar year. Existing chemical elements and elementary particles have been found, apparently not all of the natural universe, and this is obvious, unquestionable scientific facts. For example, interstellar matter, dark matter, antimatter, celestial gravitation and enormous gravitational field, and so difficult to complete stellar explosion with accurate and detailed description and explanation of the theory known theorem, is proof. In this sense, the new major discoveries and major research and exploration will undoubtedly appear in human history long historical process, and never will be weakened.

(Excerpt unfinished, adjourned. Because of their length, a selection of which segments, according to the author in 1986 in France and Belgium by the original excerpt, the original manuscript for bilingual hereby noted.)

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多