分享

JVM调优

 我是书迷705 2015-04-22

1.常规情况下   可以使用任务管理器进行查看;

也可以使用win+R+cmd 进入命令行模式;然后输入tasklist可以查看计算机的所有的任务;

然后可以通过PID(也就是每一个进程对应的ID)关掉需要关掉的进程;使用的命令是taskkill /PID 4704;(可以通过tasklist /?查看所有的命令)


通过输入命令:java –version;可以查看当前Java 中的jdk,jre版本;

通过点击 Window ----> Preferences ----> Installed JREs   location即为jdk在电脑上的存放位置。找到bin文件夹,然后找到jvisualvm.exe;执行即可;这是sun公司自带的,能提供在Java虚拟机上运行的Java应用程序的详细信息;

Dump文件是进程的内存镜像 dump:堆转储;  Profiler 分析器;

 

JVM调优工具:JconsolejProfileVisualVM

 

Jvm调优很好的一个例子:

http://www./lib/view/open1334729637702.html

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JVM调优总结 -Xms -Xmx -Xmn -Xss

1.    堆大小设置
JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m
典型设置:

o    java -Xmx3550m -Xms3550m -Xmn2g -Xss128k
-Xmx3550m
:设置JVM最大可用内存为3550M
-Xms3550m
:设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。
-Xmn2g:设置年轻代大小为2G整个JVM内存大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8
-Xss128k
:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。

o    java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0
-XX:NewRatio=4:
设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为14,年轻代占整个堆栈的1/5
-XX:SurvivorRatio=4
:设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6
-XX:MaxPermSize=16m:设置持久代大小为16m
-XX:MaxTenuringThreshold=0:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。

2.    回收器选择
JVM给了三种选择:串行收集器、并行收集器、并发收集器,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置进行判断。

1.    吞吐量优先的并行收集器
如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。
典型配置

§  java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
-XX:+UseParallelGC
:选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
-XX:ParallelGCThreads=20:配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。

§  java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC
-XX:+UseParallelOldGC
:配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。

§  java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC  -XX:MaxGCPauseMillis=100
-XX:MaxGCPauseMillis=100:
设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。

§  java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC  -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy
-XX:+UseAdaptiveSizePolicy
:设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。

2.    响应时间优先的并发收集器
如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。
典型配置

§  java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC
:设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
-XX:+UseParNewGC:
设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。

§  java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection
-XX:CMSFullGCsBeforeCompaction:由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生碎片,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。
-XX:+UseCMSCompactAtFullCollection:打开对年老代的压缩。可能会影响性能,但是可以消除碎片

3.    辅助信息
JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:

o    -XX:+PrintGC
输出形式[GC 118250K->113543K(130112K), 0.0094143 secs]

                [Full GC 121376K->10414K(130112K), 0.0650971 secs]

o    -XX:+PrintGCDetails
输出形式[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs]

                [GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]

o    -XX:+PrintGCTimeStamps -XX:+PrintGCPrintGCTimeStamps可与上面两个混合使用
输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]

o    -XX:+PrintGCApplicationConcurrentTime:打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用
输出形式:Application time: 0.5291524 seconds

o    -XX:+PrintGCApplicationStoppedTime:打印垃圾回收期间程序暂停的时间。可与上面混合使用
输出形式:Total time for which application threads were stopped: 0.0468229 seconds

o    -XX:PrintHeapAtGC:打印GC前后的详细堆栈信息

o    -Xloggc:filename:与上面几个配合使用,把相关日志信息记录到文件以便分析。

4.    常见配置汇总

0.    堆设置

§  -Xms:初始堆大小

§  -Xmx:最大堆大小

§  -XX:NewSize=n:设置年轻代大小

§  -XX:NewRatio=n:设置年轻代和年老代的比值。如:3,表示年轻代与年老代比值为13,年轻代占整个年轻代年老代和的1/4

§  -XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示EdenSurvivor=32,一个Survivor区占整个年轻代的1/5

§  -XX:MaxPermSize=n:设置持久代大小

1.    收集器设置

§  -XX:+UseSerialGC:设置串行收集器

§  -XX:+UseParallelGC:设置并行收集器

§  -XX:+UseParalledlOldGC:设置并行年老代收集器

§  -XX:+UseConcMarkSweepGC:设置并发收集器

2.    垃圾回收统计信息

§  -XX:+PrintGC

§  -XX:+PrintGCDetails

§  -XX:+PrintGCTimeStamps

§  -Xloggc:filename

3.    并行收集器设置

§  -XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。

§  -XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间

§  -XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)

4.    并发收集器设置

§  -XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。

§  -XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。


四、调优总结

1.    年轻代大小选择

o    响应时间优先的应用尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。

o    吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。

2.    年老代大小选择

o    响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率会话持续时间等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:

§  并发垃圾收集信息

§  持久代并发收集次数

§  传统GC信息

§  花在年轻代和年老代回收上的时间比例

减少年轻代和年老代花费的时间,一般会提高应用的效率

o    吞吐量优先的应用:一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。

3.    较小堆引起的碎片问题
因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现碎片,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现碎片,可能需要进行如下配置:

o    -XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩。

o    -XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

一、CPU过高

1  us过高

使用监控工具快读定位哪里有死循环,大计算,对于死循环通过阻塞式队列解决,对于大计算,建议分配单独的机器做后台计算,尽量不要影响用户交互,如果一定要的话(如框计算、云计算),只能通过大量分布式来实现

2  sy过高

最有效的方法就是减少进程,不是进程越多效率越高,一般来说线程数和CPU的核心数相同,这样既不会造成线程切换,又不会浪费CPU资源

二、内存消耗过高

1  及时释放不必要的对象

2  使用对象缓存池缓冲

3  采用合理的缓存失效算法(还记得我们之前提到的弱引用、幽灵引用么?)

三、磁盘IO过高

1  异步读写文件

2  批量读写文件

3  使用缓存技术

4  采用合理的文件读写规则

四、网络

1、增加宽带流量

五、资源消耗不多但程序运行缓慢

1、使用并发包,减少锁竞争

2、对于必须单线程执行的使用队列处理

3、大量分布式处理

六、未充分利用硬件资源

1  修改程序代码,使用多线程处理

2  修正外部资源瓶颈,做业务拆分

3  使用缓存

 


    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多