原题链接: http://oj./problems/best-time-to-buy-and-sell-stock-iii/ 这道题是Best Time to Buy and Sell Stock的扩展,现在我们最多可以进行两次交易。我们仍然使用动态规划来完成,事实上可以解决非常通用的情况,也就是最多进行k次交易的情况。 这里我们先解释最多可以进行k次交易的算法,然后最多进行两次我们只需要把k取成2即可。我们还是使用“局部最优和全局最优解法”。我们维护两种量,一个是当前到达第i天可以最多进行j次交易,最好的利润是多少(global[i][j]),另一个是当前到达第i天,最多可进行j次交易,并且最后一次交易在当天卖出的最好的利润是多少(local[i][j])。下面我们来看递推式,全局的比较简单,
global[i][j]=max(local[i][j],global[i-1][j]), 也就是去当前局部最好的,和过往全局最好的中大的那个(因为最后一次交易如果包含当前天一定在局部最好的里面,否则一定在过往全局最优的里面)。对于局部变量的维护,递推式是
local[i][j]=max(global[i-1][j-1]+max(diff,0),local[i-1][j]+diff), 也就是看两个量,第一个是全局到i-1天进行j-1次交易,然后加上今天的交易,如果今天是赚钱的话(也就是前面只要j-1次交易,最后一次交易取当前天),第二个量则是取local第i-1天j次交易,然后加上今天的差值(这里因为local[i-1][j]比如包含第i-1天卖出的交易,所以现在变成第i天卖出,并不会增加交易次数,而且这里无论diff是不是大于0都一定要加上,因为否则就不满足local[i][j]必须在最后一天卖出的条件了)。 上面的算法中对于天数需要一次扫描,而每次要对交易次数进行递推式求解,所以时间复杂度是O(n*k),如果是最多进行两次交易,那么复杂度还是O(n)。空间上只需要维护当天数据皆可以,所以是O(k),当k=2,则是O(1)。代码如下: 双击代码全选1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | public int maxProfit( int [] prices) {
if (prices== null || prices.length== 0 )
return 0 ;
int [] local = new int [ 3 ];
int [] global = new int [ 3 ];
for ( int i= 0 ;i<prices.length- 1 ;i++)
{
int diff = prices[i+ 1 ]-prices[i];
for ( int j= 2 ;j>= 1 ;j--)
{
local[j] = Math.max(global[j- 1 ]+(diff> 0 ?diff: 0 ), local[j]+diff);
global[j] = Math.max(local[j],global[j]);
}
}
return global[ 2 ];
}
| 可以看到,这里的模型是比较复杂的,主要是在递推式中,local和global是交替求解的。不过理清思路之后,代码是非常简练的,不禁感叹算法真是牛逼哈,这么个复杂生活问题几行代码就解决了。
来源:
csdn 作者:Code_Ganker
|