分享

“05后”钙钛矿结构太阳能电池何以向前辈们发难? | intoPV

 myriad 2015-05-30

在上期的观点文章“打破噱头问到底,太阳能电池究竟需要多厚?”中,我们概括了三代太阳能电池的大部分种类,但有一条漏网大鱼,就是近期红的发紫的钙钛矿结构太阳能电池。近一年来,钙钛矿型电池已经受到重量级期刊的广泛报道(至少3篇NATURE,两篇SCIENCE,若干篇NANO LETTERS, JACS, APL等,请参见底部参考文献),媒体转载也是铺天盖地。长江后浪推前浪,09年横空出世的年轻电池形态有没有潜力把前辈们拍在沙滩上? 

鉴于这个名词容易引起误解,先一起来看看庐山真面目–

钙钛矿(Perovskite)泛指一类陶瓷氧化物,由于存在于矿石中的钛酸钙(CaTiO3)化合物最早被发现,因此而得名。后来钙钛矿成为固体物理里面对这一类晶格类型的称呼,其分子通式为ABX3,A,B,X可以代表不同元素。从构成来看,它们是一系列无机化合物。而近来大热的新型电池也被称做钙钛矿型太阳能电池(Perovskite-Based Solar Cells),并不是因为采用了上面提到的陶瓷氧化物作为材料,恰恰相反,这类电池的活性材料是有机铅碘化合物(甲胺铅碘,化学式CH3NH3PbI3)。那为什么还以此命名呢?因为甲胺铅碘可以形成具有钙钛矿结构的晶体,有机短链、铅离子以及碘离子分别占据晶格的A、B、X位置,由此构成三维结构。为了方便起见,大概就约定俗成为钙钛矿型(或钙钛矿结构)太阳能电池。

钙钛矿晶体结构

钙钛矿晶体结构

但是有的媒体报道的时候,因为不了解缘由,直接说成钙钛矿太阳能电池,甚至引出钛酸钙(CaTiO3)来分析资源储量,误人不浅。退一万步说,如果真用CaTiO3来做电池,它的能带宽度对应于387纳米的光线,意味着不可能吸收利用任何可见光,所以当做活性材料是没有意义的,用做传导材料倒是不无可能。鲸鱼不是鱼,龙猫不是猫,此钙钛矿并非彼钙钛矿,现在我们可以清楚的分辨这一点了。

钙钛矿结构太阳能电池属于哪个种类?

有机铅碘化合物晶体具有独特的光电性能,它的八面体体系有利于电子和空穴的传输,使得该类材料具有优异的载流子传输特性。而且还有合适的能带结构,较好的光吸收性能,能够吸收几乎全部范围的可见光用于光电转换。以钙钛矿型铅碘化合物为活性吸光材料的薄膜电池,普遍来说两边还分别需要电子传输层(一般为二氧化钛TiO2)和空穴传输层来辅助导出电流。因此从结构来看,个人觉得可把它归为广义敏化太阳能电池的一种。但是学术上对它的工作机理还存在敏化机制和异质结机制的争论。

钙钛矿型电池是在09年左右报道出现,属于新生代“05后”。来看看 “05后”新型电池的四大杀器–

  1. 效率值及其潜力。钙钛矿型电池在09年横空出世之后,其光电转化效率在近5年内从3.8%迅速提高到15.6%,被SCIENCE评选为2013年十大科学突破之一。效率值高于非晶硅电池实验室值,更是甩开它的近亲–染料敏化和有机太阳能电池几条街的距离。最重要的是随着电池工艺的进一步发展和成熟,暂时还看不到它效率值的天花板。比较
  2. 制备条件和成本。能源消耗和生产成本对当今光伏产业的发展尤为重要,制备条件温和、电池结构较简单是铅碘化合物电池的优点。制备方法有液相、气相和气-固沉积等,铅碘化合物容易自组装形成晶体,各层材料的制备温度可以不超过150度,低温意味着低能耗。另外每层都可做成平面型结构(planar structure),可以避免制备特殊纳米结构的繁杂性和不确定性(有一篇NATURE作者特别指出,此类高效率电池并不需要纳米结构的材料),符合大量生产的现实要求。结构
  3. 建筑一体化潜力。在集中电站和屋顶发电之外,光伏的建筑一体化已经是箭在弦上。钙钛矿型电池属于薄膜电池,目前主要就是沉积在玻璃上,还可以通过控制各层材料的厚度和材质来实现不同程度的透明度,当然也会降低效率值,不过对这类应用是值得尝试的。例如牛津大学的实验室已经可以做出半透光(灰褐色)的电池。如果这种将采光与发电融为一体的太阳能电池开发顺利,有望成为高楼大厦幕墙装饰、车辆有色玻璃贴膜等的替代品,这对于拓展太阳能电池的更广泛应用意义重大。
  4. 原料储量和毒性。大家可能注意到材料里含有铅,不过铅跟其他类型电池含有的砷、镓、碲、镉相比就是小巫见大巫了,事实上固化封装的各类太阳能电池都很安全,不会危害日常生活。再就是自然储量够不够商业化生产?铅早已经在商业化产品中大量应用了,这自然不会是问题。举个栗子:假设将来钙钛矿型太阳能电池年产能达到不可能的1000 GW(吉瓦,一吉瓦等于一百万千瓦),那么需要的铅也不到一万吨,相比之下,铅酸蓄电池每年消耗的铅高达4百万吨。而其他元素和材料也都比较常见,不会成为供应链的短板。

说了半天,敢情这电池一点缺点没有啊?当然不是。目前主要有两类问题:一是普遍采用的空穴传输材料(Spiro-OMeTAD)较为昂贵,这提升了整个电池的成本。如果能避免使用这种材料将是最好的选择,值得一提的中科院物理所孟庆波研究组通过界面调控和薄膜沉积优化,在无空穴传输材料的钙钛矿型甲胺铅碘薄膜电池研究方面取得了重要进展,电池效率突破10%。二是电池使用了部分有机材料,长期稳定性自然也值得进一步检验。有关电池寿命的研究很少,目前仅有一个研究封装的电池在45度下全负荷光照时的工作情况报道,结果表明500小时后电池的效率下降少于20%,这个结果应该算不错了,稳定性压倒有机太阳能电池。毕竟钙钛矿型电池作为新兴的电池形态,才发展了5年,可以预期这两方面会有足够改进的空间,是骡子是马大家拭目以待吧。

 

参考文献:Nature, 2013, 501, 395; Nature, 2013, 499, 316; Science, 2013, 342, 317; JACS, 2014, 136, 622; Nano Lett, 2014, 14, 724; APL, 2014, 104, 063901.

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多