分享

逻辑函数的化简方法

 qdku 2015-06-10
一、公式法化简:是利用逻辑代数的基本公式,对函数进行消项、消因子。常用方法有:
  ①并项法 利用公式AB+AB’=A 将两个与项合并为一个,消去其中的一个变量。
  ②吸收法 利用公式A+AB=A 吸收多余的与项。
  ③消因子法 利用公式A+A’B=A+B 消去与项多余的因子
  ④消项法 利用公式AB+A’C=AB+A’C+BC 进行配项,以消去更多的与项。
  ⑤配项法 利用公式A+A=A,A+A’=1配项,简化表达式。
  二、卡诺图化简法
  逻辑函数的卡诺图表示法
  将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上相邻排列,得到的图形叫做n变量最小项的卡诺图。
  逻辑相邻项:仅有一个变量不同其余变量均相同的两个最小项,称为逻辑相邻项。
  1.表示最小项的卡诺图
  将逻辑变量分成两组,分别在两个方向用循环码形式排列出各组变量的所有取值组合,构成一个有2n个方格的图形,电子电路图每一个方格对应变量的一个取值组合。具有逻辑相邻性的最小项在位置上也相邻地排列。
  用卡诺图表示逻辑函数:
  方法一:1、把已知逻辑函数式化为最小项之和形式。
  2、将函数式中包含的最小项在卡诺图对应 的方格中填 1,其余方格中填 0。
  方法二:根据函数式直接填卡诺图。
  用卡诺图化简逻辑函数:
  化简依据:逻辑相邻性的最小项可以合并,并消去因子。
  化简规则:能够合并在一起的最小项是2n个。
  如何最简: 圈数越少越简;圈内的最小项越多越简。
  注意:卡诺图中所有的 1 都必须圈到, 不能合并的 1 单独画圈。
  说明,一逻辑函数的化简结果可能不唯一。
  合并最小项的原则:
  1)任何两个相邻最小项,可以合并为一项,并消去一个变量。
  2)任何4个相邻的最小项,可以合并为一项,并消去2个变量。
  3)任何8个相邻最小项,可以合并为一项,并消去3个变量。
  卡诺图化简法的步骤:
  画出函数的卡诺图;
  画圈(先圈孤立1格;再圈只有一个方向的最小项(1格)组合);
  画圈的原则:合并个数为2n;圈尽可能大(乘积项中含因子数最少);圈尽可能少(乘积项个数最少);每个圈中至少有一个最小项仅被圈过一次,以免出现多余项。
  写出最简与或表达式。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多