标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical
dispersion)上的测量。标准差定义为方差的算术平方根,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:
为非负数值, 与测量资料具有相同单位。 一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。
简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 如是总体,标准差公式根号内除以n 如是样本,标准差公式根号内除以(n-1) 因为我们大量接触的是样本,所以普遍使用根号内除以(n-1) 标准偏差(Std Dev,Standard Deviation) -统计学名词。一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。 STDEV
估算样本的标准偏差。标准偏差反映相对于平均值 (mean) 的离散程度。
语法 STDEV(number1,number2,...) Number1,number2,... 为对应于总体样本的 1 到 30 个参数。也可以不使用这种用逗号分隔参数的形式,而用单个数组或对数组的引用。 说明 :函数 STDEV 假设其参数是总体中的样本。如果数据代表全部样本总体,则应该使用函数 STDEVP 来计算标准偏差。 此处标准偏差的计算使用“无偏差”或“n-1”方法。 函数 STDEV 的计算公式如下: ![]() 其中 x 为样本平均值 AVERAGE(number1,number2,…),n 为样本大小。 忽略逻辑值(TRUE 或 FALSE)和文本。如果不能忽略逻辑值和文本,请使用 STDEVA 工作表函数。 示例 假设有 10 件工具在制造过程中是由同一台机器制造出来的,并取样为随机样本进行抗断强度检验。 如果您将示例复制到空白工作表中,可能会更易于理解该示例。 操作方法 创建空白工作簿或工作表。 请在“帮助”主题中选取示例。不要选取行或列标题。 从帮助中选取示例。 按 Ctrl+C。 在工作表中,选中单元格 A1,再按 Ctrl+V。 若要在查看结果和查看返回结果的公式之间切换,请按 Ctrl+`(重音符),或在“工具”菜单上,指向“公式审核”,再单击“公式审核模式”。 1 2 3 4 5 6 7 8 9 10 11 A 强度 1345 1301 1368 1322 1310 1370 1318 1350 1303 1299 公式 说明(结果) =STDEV(A2:A11) 抗断强度的标准偏差 (27.46391572) ===================================================================================== Excel中共有四个用于计算标准差的公式,其中: stdevp和stdevpa用于其参数是样本空间中全体样本的情况; stdev和stdeva用于其参数仅仅是样本空间中的一个子集的情况。 四个函数中有两个是以字母A结尾的,表示把逻辑值和文本值都计入了(TRUE 当作 1 ;文本或 FALSE 当作 0 );另两个表示忽略逻辑值和文本值。 ================================================================ 你可根据你的数据具体情况决定使用哪一种函数,它们的区别如下: |
|