分享

液晶显示屏背光灯及高压驱动电路工作原理3

 wudeshuguan 2015-08-29

  以上两种架构的功率输出电路的每一个桥臂的放大元件是N沟道和P沟道MOSFET组成的串连推挽功率输出电路。

  3、 推挽架构;

  这种架构的功率放大电路如图10,只用两只廉价的低导通电阻的N沟道MOSFET,使电路的效率更高(P沟道的MOSFET价格高、由于导通电阻大,电路的效率较低),对于MOSFET的筛选要求也低,电路所用元件也少,有利于最大限度降低成本。该推挽架构对电源的稳定要求较高(如稳定的12V供电),对于如笔记本电脑的电池电压在使用中逐渐下降的设备,不易采用此推挽架构的电路。

  4、 Royer架构(自激振荡);

  自激振荡器方式 图11,不需要激励控制电路,主要两只功率管和变压器加反馈电路组成的最简单应用方式,是在不需要严格控制灯频和亮度的设计中。由于Royer架构是自激式设计,受元件参数偏差的影响,很难严格控制振荡频率和输出电压的稳定,而这两者都会直接影响灯的亮度、使用寿命。并且无法对液晶屏进行亮度控制,一般应用在廉价的节能灯上,正因为此,Royer架构一般不被用于液晶显示屏上。尽管它是本文所述四种架构中最简单、廉价的。

08.gif09.gif

  图8 全桥架构

010.gif011.gif

  图9 半桥架构

  图10 推挽架构 图11 Royer架构

  输出电路及正弦波的形成;

  背光板驱动电路中前级(振荡器和调制器)和功率输出部分,基本上是工作在开关状态(开关状态工作效率高、输出功率大),输出基本也是开关信号,前面已经提到冷阴极荧光灯的最佳供电电压波形是正弦波,为了保证背光灯管工作在最佳状态(对于发光亮度及寿命是非常重要的),还必须把功率输出级输出的信号变换为正弦波。

  正弦波的转换;

  整个背光灯驱动电路我们可以把它看成是一个它激振荡器。

  作为一个振荡器输出什么波型,完全取决于振荡器的输出电路特性,输出电路是非谐振电路,输出是脉冲波(输出特性是纯容性输出锯齿波,输出特性是纯阻性输出方波,输出特性是纯感性输出微分波为主),输出电路如果是谐振电路输出必然是正弦波。我们只要把背光灯高压驱动输出电路,做成一个谐振电路就可以输出正弦波,如果谐振电路的谐振频率就是振荡器的振荡频率,那么该背光灯驱动电路,就能做到最大限度的高效的把能量传输给灯管。

  输出电路的处理方式是;在高压变压器的输出端(输入端也可以)和灯管连接处串连一只电容器C 图12,电容器C和输出高压变压器输出端L及负载R(灯管)组成了一个低Q值的串连谐振电路。等效电路 图13。在图中 对于功率输出信号的频率作用于电感L和电容C,来说,在此频率下,当电感L的感抗XL等于电容C的容抗XC时,电路产生谐振,在此谐振电路中即产生谐振,由于组成是串连谐振电路,所以谐振时;电流达到最大值,此最大电流即是流过冷阴极荧光灯管的电流。其谐振时达到的最大值,也意味着功率输出的能量,最大限度的输送给了灯管,由于灯管也串连在电路中的一部分,形成了串连谐振电路的电阻份量,所以该谐振电路是低Q值电路,即使是振荡频率略有偏差,也能保证能量的传输。

  前面介绍过,在灯管点亮后的负阻特性,必须有限流的作用,此电路中电容器 C的容抗,正好起到限流的左右,此种方式限流能量损耗极小,此输出电路极为巧妙。

  但是为了保证电容C和电感L的谐振频率就是振荡器的振荡频率,又要使电容C的容抗XC的大小基本正好是灯管的限流值,电路的精确设计是至关重要的。

  在维修中,电容C是比较容易损坏的元件,如有损坏,一定要用和原来一样的电容代换,否则其性能会大幅下降,甚至不能使用。

012.gif

  图 12

013.gif

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多