一提到数学,大部分学生都会“不寒而栗”。他们会感觉很难,即使是特别努力也学不好。其实学习数学时努力是基本,方法最重要,现在我们和大家分享一下成功学习数学的经验,希望能够对大家有所帮助 一、熟悉定义、公式、定理和规则等习题中所涉及的内容 不断地练习、解题只是学习数学过程中的一个环节,而不是全部,你不能单纯地为解题而解题。解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,以及能否利用这些概念、定理、公式和规则解决实际问题。解题时,我们理解的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。 因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。 二、熟练掌握以前学过的知识,熟悉其他学科相关的知识 有时候,我们遇到一道不会做的习题,也许并不用到现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记不清了;或是需用到一个特殊的定理,而我们却从未学过,这样就增加了解题难度。 这时,我们应先补充一些之前学过的相关知识,弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。 三、熟悉基本的解题步骤和解题方法 数学是思维的体操,是一门逻辑性强、思维严谨的学科。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。否则,走了弯路就多花了时间。 四、认真做好归纳总结 每学完一节一章后,要按知识的逻辑关系进行归纳总结,使所学知识系统化、条理化、专题化,这也是再认识的过程,对进一步深化知识积累资料,灵活应用知识,提高概括能力将起到很好的促进作用。 五、先易后难,逐步增加习题的难度 人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念更清晰了,对公式、定理以及解题步骤更熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。养成了习惯,遇到一般的难题,同样可以保持较高的解题速度。 有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。 其实,解简单容易的习题,并不一定比解一道复杂难题的劳动强度和效率低。比如,与一个人扛一大袋大米上五层楼相比,一个人拎一个小提包也上到五层楼当然要轻松得多。但是,如果扛米的人只上一次,而拎包的人要来回上下50次、甚至100次,那么,拎包人比扛米人的劳动强度大。所以在相同时间内,解50道、100道简单题,可能要比解一道难题的劳动强度大。 由此可见,去解一道难以解出的难题,不如去解30道稍微简单一些的习题,其收获也许会更大。因此,我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。 六、养成良好的审题习惯 审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到题目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验的基础上,依次逐句仔细审题,细心推敲,切忌题意不清,仓促上阵。审数学题有时须对题意逐句“翻译”,隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。 七、学会画图 画图是一个翻译的过程。读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。 因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。画图时应注意尽量画得准确。画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧途。 |
|