配色: 字号:
Thermodynamics of Micelle Formation and Membrane Fusion Modulate Antimicrobial Lipopeptide Activity
2015-12-21 | 阅:  转:  |  分享 
  
Article

ThermodynamicsofMicelleFormation

AntimicrobialLipopeptideActivity

Medica

fungi.

case,

or

vulnerabletoevolvedresistancethantraditionalantibiotics.

andthusmusthaveasignificantnumberofhydrophobic

requiredtomakethepeptidesselectiveforanionicbacte-

ria-likemembranes.TheresultisthatmostnaturalAMPs

bialmembranesarebelievedtobethemajortargetsof

phenomenon.Onecouldattempttoexaminetheimpactof

propensitytoformoligomers,butthisapproachwould

alsoalterthestructureoftheindividualmolecules,and

manufacturing;moreover,thechoiceoflinkagewould

Correspondence:alan_grossfield@urmc.rochester.edu

750BiophysicalJournalVolume109August2015750–759

Editor:MarkusDeserno.

C2112015bytheBiophysicalSociety

likelythemembraneinteractionaswell.Alternatively,one

couldcovalentlylinkthemonomerstogether(14),butthis

approachwouldsignificantlyincreasethecostofAMP

SubmittedApril16,2015,andacceptedforpublicationJuly1,2015.

sidechainstoovercomethepolarityofthepeptide

backbone.Additionalresidues,oftencationic,areusually

AMPoligomerizationonmembranebindingbysimply

introducingmorehydrophobicaminoacidstoincreasethe

Moreover,AMPs’membranebindingmechanismshields

themfromseveralresistancestrategies,suchasmultidrug

effluxtransporters(3,4).

However,therearealsodisadvantagesthatlimitAMPs’

clinicalapplication.Oneofthemajorhurdlesisthatthey

areexpensivetomanufacture,process,andstorebecause

theyaremuchlargerandchemicallycomplexthantypical

drugmolecules(5,6).Thisisinpartbecausethereappears

tobealowerlimittothesizeoftraditionalAMPs;they

mustbehydrophobicenoughtobindmembranesstably,

AMPs,onecannotruleoutthepossibilitythatothercellsur-

facestructurescouldaffectthemembraneactivityofAMPs.

Infact,itwassurmisedthatthepreassembledAMPsmight

beretainedbymacromoleculesoncellsurfacesandkept

frominteractingwithmembranessimplybecauseoftheir

increasedsizescomparedtomonomers(11,14).Unfortu-

nately,thelimitedresolutionfromexperimentsandthe

lackofmolecularinsightsmakeithardtoexplainwhy

thiskindofblockagewouldonlyoccurforcertainmicrobial

specieswithspecificAMPs,asopposedtobeingauniversal

antimicrobialdrugs.Membranecompositionisrelatively

conservedduringevolution,whichmakesAMPsless

orexclusionfromdegradingenzymes’activesites,the

reasonforthelatterremainsamystery.Althoughthemicro-

DejunLin

1

andAlanGrossfield

1,



1

DepartmentofBiochemistryandBiophysics,UniversityofRochester

ABSTRACTAntimicrobiallipopeptides(AMLPs)areantimicrobial

branes.OneclassofAMLPs,composedofcationictetrapeptides

tionsinthemicromolarrangeagainstarangeofbacteriaand

simulationsandfreeenergymethodstostudythethermodynamics

Here,weextendedthestudytothebiologicallyrelevantmicellar

basedonhydrophobiccontacts.Usingumbrellasamplingalong

stateswhenmicellesinsertintomembranes.Theresultsindicate

thermodynamicallyfavorable,butincontrasttothemonomeric

thesefreeenergybarriersdependsonthemembranecomposition,

bacterialmembranesmaybeasmuchkineticasthermodynamic.

omericstateinsolutionascriterionwhenoptimizingpeptides

INTRODUCTION

Thepressingneedfornovelantibioticsagainstresistant

strainsofbacteriaandfungihasbecomeaglobalmedical

concern.Anemergingclassofantimicrobialdrugcandi-

dates,antimicrobialpeptides(AMPs),hasbeenthefocus

ofsignificantresearchonantiresistanceantibiotics(1).

Unliketraditionalantibioticsthattargetspecificgrowthor

functionprocessesofthemicrobes,manyAMPswerefound

todisruptthestructureandfunctionoftheirmembranes(2).

AMPs’lipophilicityendowsthemwithafewadvantagesas

0006-3495/15/08/0750/10

andMembraneFusionModulate

lCenter,Rochester,NewYork

drugcandidatesthatpreferentiallytargetmicrobialmem-

attachedtoanacylchain,haveminimalinhibitoryconcentra-

Previously,weusedcoarse-grainedmoleculardynamics

oftheirinteractionwithmembranesintheirmonomericstate.

state,using,toourknowledge,anovelreactioncoordinate

thisreactioncoordinate,weidentifiedthecriticaltransition

thatthebindingoftheseAMLPmicellestomembranesis

therearesignificantfreeenergybarriers.Theheightof

suggestingthattheAMLPs’abilitytoselectivelytarget

Thismechanismhighlightstheimportanceofconsideringolig-

lipopeptidesasantibioticleads.

are12–40aminoacidslong,farlargerthanmostdruglike

molecules.

AnothermajorobstacletoAMPs’applicationisthelack

ofunderstandingtherelationbetweentheiroligomerization

insolutionandtheirbiologicalactivity.SomeAMPoligo-

mersareassociatedwithimprovedpeptidaseresistance

(7,8)andenhancedcellselectivity(7,9–14)comparedto

theirmonomers.Whiletheformercanbeunderstoodas

theconsequenceofstructuralchangesuponoligomerization

http://dx.doi.org/10.1016/j.bpj.2015.07.011

almostcertainlyaffectthenatureofthemembrane-bounditisprohibitivelyexpensivetoquantitativelymeasurethe

LipopeptideMicelleThermodynamics751

state.

Alltheaforementionedcomplexitiescomplicatethe

effortstooptimizetheirperformance.Forexample,in

typicalvirtualscreeningstudieswhereAMPs’activityis

modeledbasedontheirprimarysequences,thelargeamount

oftrainingdatarequiredtobuildanaccuratemodelisprac-

ticallyimpossibletoobtainforlargepeptidesduetothe

limitingeneratinghigh-throughputscreeningarrays,where

thenumberofarrayelementsscalesexponentiallywiththe

peptidelength(15).Also,peptidestendtobeflexible,witha

broadrangeofaccessibleconformations;thiscansignifi-

cantlycomplicatetheinterpretationofmutagenesisdata,

asevenseeminglysimplesubstitutionscansignificantly

alterthepeptides’conformationandposerelativetothe

membrane.ThisflexibilityalsomakesAMPschallenging

targetsforcomputersimulation;theirstructuralplasticity

combinedwiththeslowrelaxationtimesforlipid-peptide

interactionsmakeitveryhardtoacquireadequatestatistical

sampling,evenusingstate-of-the-artenhancedsampling

methods(16,17).Forthesereasons,aswellastheirsuscep-

tibilitytoproteasedegradationinvivoandtheirpotential

toxicitytohumancells(5),therehasbeenonlylimitedsuc-

cessinmakingAMPsintointernalantibiotics(15).

InanattempttobypassthespecificissuesofAMPs,

AvrahamiandShai(18,19)devisedanalternativeapproach

toutilizeAMPs’membraneactivitybyconjugatingfatty

acidstoshortcationicpeptides.Thesesmallsyntheticmol-

ecules,calledantimicrobiallipopeptides(AMLPs),mimic

AMPs’amphipathicityandcationicnature,andhavebeen

showntobepotentantimicrobialswithminimalinhibitory

concentrationsinthemicromolarrange.Basedonamore

recentdesignofAMLPscaffold,C16-KXXK,where

‘‘C16-’’denotesthepalmitoylchainattachedtotheN-termi-

nusofthetetrapeptideKXXKcontainingtwolysinesand

twoguestresiduesX,Makovitzkietal.(20)foundseveral

potentantimicrobialsthathadinsignificanthemolysis.Later

workfurthershowedthatsimilarAMLPswereabletoclear

infectionsinvivo(21).Mostnotably,C16-KGGK(thebold

letterdenotestheD-enantiomer,includedtoconferresis-

tancetopeptidasedegradation(22)),themostpotentamong

theseAMLPs,hasamicromolarMICagainstseveral

pathogenicmicrobes,includingbothbacteriaandfungi.

Theattachmentoftheacylchainstopeptidesalsopromoted

theiraggregation(23),makingtheselipopeptidesexcellent

modelsforstudyingoligomerization.

MostoftheexperimentalworkontheseAMLPstodate

focusedontheirefficacyonamacro-ormesoscopicscale,

sorelativelylittleisknownabouttheirmechanismsatthe

levelofindividualmolecules.TobetterunderstandAMLPs’

modeofaction,ourlabhasbeenusingacombinationof

all-atomandcoarse-grained(CG)moleculardynamics

(MD)simulationstoexaminetheselipopeptides’membrane

activity.Whileall-atomsimulationsprovideatomicdetails

aboutthemembraneperturbationcausedbyAMLPs(24),

thermodynamicsofmembranebinding.Wethususeda

CGmodeltoexamineslowprocessessuchasAMLPs’bind-

ingtomembranes(25,26).TheCGmodelweused,the

MARTINIforcefield,isdesignedsuchthateachCGparticle

representsfourheavyatoms;itgenerallyrunsatleasttwo

ordersofmagnitudefasterthananequivalentall-atom

model(27,28)andisabletoreproduceexperimentalresults

inmanycases(29–34).

OurprevioussimulationsusingtheMARTINImodel

quantifiedthebindingthermodynamicsofmonomeric

C16-KGGKtomembranes(26).Ourresultsindicatedthat

theacylchainoftheseAMLPsdominatestheirbinding

affinitytomembranes,whilethepeptideportionconfers

selectivityforanionicmembranes(26).However,bothex-

periments(23)andsimulations(24,25)suggestedthatthese

AMLPstendtoaggregateintonanostructuresatmoderate

concentrations;suchaggregatesarethoughttoenhance

AMLPs’solubilityandantimicrobialactivityandcould

contributetotheirresistancetodegradation.Thus,thefocus

ofthisworkistostudytheinteractionsbetweenlarger

aggregates(micelles)ofAMLPsandmembranes.

However,therearetechnicaldifficultiesregardingthe

simulationofamphiphileaggregation.Aggregatesofeven

moderatesizetendtobeatleastmetastable,soobtaining

awell-equilibratedsizedistributionisverychallenging,

requiringeitherverylongsimulationsorefficientenhanced

samplingalgorithms.Forexample,ananalogousprocess,

vesiclefusion,takesplaceinmillisecondstohundredsof

microseconds,whichisextremelychallengingtosimulate

usingbrute-forcemethods(35),evenwithaCGforcefield.

ToexploretheprocessofAMLPsbindingtomembranesby

brute-forcemeans,wewouldneedtoconsiderthetransferof

anyAMLPfromoneaggregatetoanotheraswellasfroman

aggregatetomembrane.Thesetransitionsareveryslow,

becausetheyrequirepartialexposureofthehydrophobic

tailstowater(26).

Inthisstudy,weintroduce,toourknowledge,anovel

reactioncoordinate,thehydrophobiccontactnumber,that

characterizestheaggregationofamphiphilesandtheirbind-

ingtomembranes.Usingumbrellasamplingalongthis

reactioncoordinate,wecalculatedthefreeenergyofthe

formationofaC16-KGGKmicelleinwaterandthebinding

ofthismicelletomembranes.Ourresultsshowthatthis

micellehasmuchhigheraffinitytotheanionicbacterial-

likemembranethantheneutralmammalian-likemembrane,

consistentwithourpreviousresultsonthemonomericC16-

KGGK(26).Mostsurprisingly,thesecalculationsrevealed

asignificantfreeenergybarriertomicellemembraneentry,

whichwasabsentinthemonomericC16-KGGKcase.This

barrierismuchhigherinthecaseofthezwitterionic

mammalian-likemembranethantheanionicbacterial-like

membrane,whichmeansthebindingtothelatterismore

favorablenotjustthermodynamicallybutkineticallyas

well.Ouranalysisrevealsthatthemechanismsofmicelle

BiophysicalJournal109(4)750–759

membraneentrydependonthemembranecompositions,

leaflet),andcarewastakentoensurebothleafletshadthesamecom-

position.HydrationwasmodeledusingthepolarizableMARTINIwater

C0C1

1

XX

therangeofRCsinTableS1,andthereferencepositions(C

AB

inEq.3)

ofalltheumbrellasamplingwindowsareplottedinFig.S1.Thisrange

valueswereasclosetothecentersofthewindowaspossible.

752LinandGrossfield

S

ij

r

ij

?

1t

C0

r

ij

C14

r

0

C1

n

(1)

wherer

0

isthedistanceatwhichthecontactisexactly0.5andncontrols

thesteepnessofthefunction.Thetotalnumberofcontactsbetweentwo

groupsofparticlesAandBisthesumofS

ij

overalltheuniquepairs

betweenAandB:

model(36).

TheC16-KGGKmoleculewasconstructedbymergingtheMARTINI

palmitoylwiththeMARTINIKGGKpeptide.TheMARTINImodeldoes

nothavesufficientresolutiontorepresentchirality,butthisisnotaserious

limitation:afour-residuepeptideistooshorttoformsecondarystructure,

andinanyevent,experimentsshowthatvaryingthebackbonechirality

hasnosignificanteffectonthelipopeptide’sproperties(38).Forthepur-

posesoftheMARTINImodel,wetreatedthesepeptidesasrandomcoil,

anddidnotapplyanysecondarystructurerestraints.Aboxofwaterwith

randomlyscatteredC16-KGGKswasequilibratedforseveralhundred

nanosecondsuntiltheC16-KGGKsaggregatedintomicelles.Weextracted

thelargestofthesemicellesandremovedseverallipopeptidestoproduce

a48-mer;bindingasingle48-lipopeptidemicelletoeithermembrane

compositionproducesa10:1lipid/peptide.

Foreachbilayercomposition,weplacedtheC16-KGGKmicelle~60A

?

fromthebilayercenterofmass.Thesystemwasthensolvatedwithwater,

andsodiumandchlorideionswereaddedtoreachaconcentrationof

~100mM.Extracounterionswereaddedtoneutralizethechargesonlipids

andlipopeptides.Themembranebindingsimulationscontainedatotalof

51,300CGparticles,whilethesimulationsofmicelleformationinwater

contained12,730particles.

Umbrellasampling

Thepotentialsofmeanforce(PMF)tobindaC16-KGGKmicelletoalipid

bilayerwerecalculatedusingumbrellasamplingandtheweightedhisto-

gramanalysismethod(WHAM)(39).Thereactioncoordinates(RCs)we

usedwerebasedonthenumberofhydrophobiccontactswithinthemicelle

andbetweenthemicelleandthemembrane;thereasonsusingtheseRCs

(inplaceofmorecommonchoices,suchasthedistancefromthemembrane

center)arediscussedinSectionS1.1intheSupportingMaterial.

Specifically,thenumberofcontactsbetweenapairofmoleculesiandjis

definedasasmoothfunctionofthedistancebetweentheircenters-of-mass

distancer

ij

,

cellesandtheirmembraneselectivityandprovidebiophys-

icalinsightintoantimicrobialdrugoptimizationbasedon

AMLPs.

MATERIALSANDMETHODS

Systemconstruction

AllsystemsweremodeledusingtheMARTINIcoarse-grainedforcefield,

Vers.2.2P(36,37).Weusedtwolipidbilayercompositions:a2:1mixture

ofPOPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine)and

POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol),representing

aGram-negativebacteria-likemembrane,andpurePOPC(1-palmitoyl-

2-oleoyl-sn-glycero-3-phosphocholine),representingamammal-like

membrane.Constructionofthemembranebilayerswasdescribedprevi-

ouslyinHornetal.(25).Eachsystemcontained480lipids(240per

whichexplainsthevariationinthebarrier.Theresults

suggestalinkbetweenthestabilityofthelipopeptidemi-

BiophysicalJournal109(4)750–759

Theweightedhistogramanalysismethod(WHAM)(39)wasusedto

calculatethePMFsfromtheumbrellasamplingdata.Thedynamicrange

ofthePMFsineachsystemweweredealingwithinthisstudywas

usually~200–300kcal/molandthenumberofumbrellasamplingwindows

was~600–800.PerformingWHAMonsuchadatasetturnedouttobequite

challenging,andcommonimplementationsofWHAM(41)failedtocom-

pletethecalculationduetonumericalinstability.Moreover,insomecases

theterminationconditionofWHAMiterationproducedunconverged

solutionseveninthecaseofarelativelysmalltolerance(10

C06

).Thisis

dueintrinsicallytotheslowerconvergenceofWHAMiteration,which

hasbeendiscussedbeforeinZhuandHummer(42).Totackletheseissues,

weimplementedanoptimizedversionofWHAMinCttbasedontheidea

proposedbyZhuandHummer(42),wheretheWHAMequationswere

solvedbymaximizingthetargetlikelihoodfunctionviathePolak-Ribiere

conjugategradientmethodwithBrent’slinesearch(43).Amultiplepreci-

sionlibrary(44)wasusedinthisimplementationtoachievenumerical

stabilityinWHAM.

Hamiltonianreplicaexchange

Forthemicelleformationsimulations,Hamiltonianreplicaexchange

(HREX)wasusedtofacilitatetheconvergenceoftheumbrellasampling.

TheumbrellasamplingwindowswereexchangedusingaGibbssampling

algorithmdescribedinChoderaandShirts(40).TheHREXwasattempted

every500steps.Inprinciple,wecouldhaveusedHREXforthemicelle-

membranebindingsimulationsaswell,buttheverylargenumberofsimu-

lationwindowsusedinthesecalculations(z800)madetheprocedure

unfeasiblewithourcomputationalresources.

Weightedhistogramanalysismethod

ofRCscoversthetransformationfromthemicellebeingfarawayfrom

themembranestoalllipopeptidesinthemicelleinsertedandspreadout

intheupperleaflet.

Thestructuresusedtoseedtheumbrellasamplingwindowsweregener-

atedbysteeredMD(SMD)simulations,wheretheequilibriumpositionsof

theharmonicpotentialinEq.3weremovedfromastartingpositiontoan

endingpositionatconstantvelocity.MultipleSMDsimulationswith

differentstartingandendingpositionswereusedsothatthedesiredrange

ofthereactioncoordinatewascovered.SnapshotsfromtheSMDsimula-

tionswereusedtoseedtheumbrellasamplingssuchthatthestartingRC

C

AB

?

i?Aj?B

S

ij

:(2)

NotethatinthecaseofA?B,weconstrainedthesumsothatisjandany

pairofiandjappearsonlyonceinthesum.

Tofacilitatethecomputation,weusedaneighborlistwithacutoff

distanceR

cut

tokeeptrackofthepairsinvolvedinEq.2.WechoseR

cut

sothatbothS

ij

(R

cut

)anddS

ij

=dr

ij

eR

cut

Tweresufficientlysmall(see

TableS1).Inallcases,theneighborlistwasupdatedeveryfivestepsin

allthesimulations.

Therestraintpotentialsinumbrellasamplingareoftheform

U?

k

2

C0

C

AB

C0C

0

AB

C1

2

;(3)

withC

0

AB

beingthereferencepositionofeachwindow.

ThedetailsofRCdefinition,theparametersinEqs.1–3,andthenumber

ofsamplingwindowsaresummarizedinTableS1.Notethatinthemem-

branebindingsimulations,wepurposelychosetoonlysampleasubsetof

0

UsingthisimplementationofWHAM(45),thePMFsformicelle

formationwerecalculatedusing472binsandaconvergencethreshold

of10

C010

ThePMFsofmicelle-membranebindingwerecalculatedusing

a300C2300gridandaconvergencethresholdof10

C010

.

Minimumfreeenergypaths

Fromeachofthetwo-dimensionalmembranebindingPMFs,weusedthe

stringmethod(46)tocalculatetheminimalfreeenergypaths(MFEPs)in

thetwo-dimensionalcontactspace.Inallcases,thestringwasinitiallycon-

structedby200imagesornodeslinearlyinterpolatedbetweenthetwo

terminalnodesattheminimacorrespondingtotherespectivesurface-bound

andinsertedstates.Wereferthereaderto‘‘PMFsforMembraneBuilding’’

andFig.2laterinthearticleforthedefinitionofthesestates.Theforward

Eulermethodwasusedtopropagatetheimageswithastepsizeof0.1in

bothdimensions.Bicubicinterpolationwasusedtoevaluatethenumerical

gradientsattheimagesateachstep.Weterminatedthecalculationifthe

meanCartesiandistanceoftheimagesbetweentwoconsecutivesteps

was<0.001.Insomecases,thestringfluctuatedaroundanequilibrium

withafluctuationof0.01andwesimplyterminatedthecalculationand

tookthefinalstringasourresult.Suchfluctuationisduetotherelatively

coarsegridonwhichthePMFswerecalculatedwherenotallthestationary

pointsofunderlyingcontinuousPMFswereresolved.Also,theinterpolated

numericalgradientsinevitablyintroducedsomeerrors.However,wedonot

thinkthiswouldaffectanyoftheconclusionsinthisstudybecausesuch

errorsareminuscule.

Eachofthemicelleformationumbrellasamplingsimulationswasrun

for~500nswherethefirst100nswereconsideredequilibrationphase,

andwereexcludedfromWHAMandanyanalysis.Thistotalsto348ms

(500ns/windowC2696windows)simulationtime.Thedurationoftheequil-

ibrationphasewasdeterminedbygraduallyexcludingNsamplesfromthe

beginningofthesimulationswhenweranWHAM,whereNincreased

withastepsizeof50ns.WecalledthefirstNsamplestheequilibrationphase

whenincreasingNdoesnotchangethecorrespondingPMFssignificantly.

ThePMFscorrespondingtoNintherangebetween50and250areplotted

inFig.S11.Mostofthemembranebindingsimulationswererunfor

~1.3msandthewindowsnearthetransitionstates(wherethereisthemost

structuraldiversity)wereextendedto~3.7ms,wherethefirst350nswere

consideredequilibrationphaseandexcludedfromWHAMandanyanalysis.

Thetotalsimulationtimeis1626.4msand1434.4ms,intherespectivecases

ofPOPE:POPGandPOPCmembrane.ThedynamicsintheMARTINIforce

fieldisusuallyfasterthananequivalentall-atomforcefieldbecausethe

coarse-grainingresultsinasmootherpotentialenergysurface;othergroups

havesuggestedthatsimulationtimesshouldbemultipliedbyafactorof4to

compensate(30),butbecausethefocusofthisworkisthermodynamics

ratherthankinetics,webelieveitisclearernottodoso.

RESULTS

PMFsofmicelleformation

Thepotentialofmeanforce(PMF)for48C16-KGGKmol-

LipopeptideMicelleThermodynamics753

A

B

Simulationprotocol

AllsimulationswereperformedusingGROMACS,Ver.4.6.3(47–49)with

themodificationdescribedinUmbrellaSampling.ForthegeneralMD

simulationparameters,weuseda20-fstimestep,andupdatedtheneighbor

listeveryfivesteps.Simulationswereperformedinisothermo-isobaric

(NPT)ensemblewithNose′-Hoovertemperaturecoupling(50,51)andthe

Parrinello-Rahmanbarostat(52),setto300Kand1bar,respectively.Elec-

trostaticswereaccountedforusingtheshiftfunctionwithaCoulombcutoff

of12A

?

.AshiftwasusedforvanderWaalsaswell,withaswitchdistance

of9A

?

andacutoffof12A

?

.

FIGURE1(A)PMFinkcal/mol(yaxis)asa

functionofthetotalnumberofC16-C16contacts

(xaxis,thesameasB)betweenalluniquepairs

of48C16-KGGKs.(B)Thejointprobabilityin

log

10

scale(colorbox)asafunctionofthenumber

ofC16-C16contacts(xaxis)andthesizeof

lipopeptideclusters(yaxis).(Twodashedlines)

Referencestoa32-anda16-mer,respectively.

Toseethisfigureincolor,goonline.

eculestoaggregateintoonemicelleisshowninFig.1A.

ThePMFhasthreedistinctminima,eachcorrespondingto

adistinctoligomerizationstateofthelipopeptides.Thefirst

(xz270)andsecondminima(xz345)representa

mixtureofdifferentsizesofoligomersrangingfrom10to

30lipopeptides;thethirdminimum(xz450)corresponds

toamicelleof48lipopeptides.Themaximumatsmallest

RCvalues(xz28)correspondstodispersedlipopeptides

inwater.Interestingly,theglobalminimumisnotthe

48-merbutmostlikelythecoexistenceofa17-anda

BiophysicalJournal109(4)750–759

31-mer(Fig.1B)andthefreeenergybarriertocombining

betweenthePOPGphosphatesandthelysinesidechainsin

opeptidemicellegetsflattened,withtheC16tailsstretching

outfrominsidethemicelletothePOPE:POPGmembrane;

thisdistortioniscompensatedbystrongelectrostaticinter-

actionsbetweenthelipidphosphates(particularlyforPG

lipids)andthelysinesidechains.Bycontrast,themicelle

doesnottendtostablyinteractwiththesurfaceofthe

POPCmembrane;instead,thelipopeptidesaretransferred

intothePOPCmembraneoneatatime,whilethemicelle

bouncesoffthesurface.Theone-at-a-timemechanismis

visibleintheseriesoflocalminimaaroundthelabeled

transitionstateinFig.2B,witheachlocalminimumrepre-

sentingadifferentfractionoflipopeptidestransferredfrom

themicelletothePOPCmembrane.Wewilldiscussthe

implicationsforthemechanismin‘‘MolecularBasisfor

AMLPs’CooperativeBindingtoBacterialMembranes’’.

MFEPsofmembranebinding

TheMFEPsoftheC16-KGGKmicellebindingtomem-

branesandthePMFvaluesalongthepathsareshownin

Figs.2,AandB,and3,respectively.TheMFEPtobind

105090130170210

C16?C16contacts

105090130170210

C16?C16contacts

A2B2

FIGURE2ThePMFsinkcal/mol(color-scale)ofbindingaC16-KGGK

micelletoeitheraPOPE:POPG(A)orPOPC(B)lipidmembraneasafunc-

tionofthenumberofC16-C16(xaxis)andC16-lipidtail(yaxis)contacts

(bottompanel).TheMFEPwasplotted(blackline)ontherespectivePMF.

(A1–A3andB1–B3)Statesalongtheminimumfreeenergypath;1refersto

thesurface-associatedstate,2tothetransitionstate,and3tothefullyin-

sertedstate.(Labelsandlines)LocationsofthesestatesonthePMF(bottom

panel).POPClipids(cyan),POPE(pink),POPG(blue),C16(red),and

KGGK(green).Toseethisfigureincolor,goonline.

754LinandGrossfield

thelipopeptides.Incontrast,theequivalentstateinthe

POPCcase(Fig.2B1)isnotmetastable(Fig.2B);itap-

pearsthatlysine-phosphateinteractionsarenotstrong

enoughtostabilizesurfacebindingintheabsenceofanionic

headgroups.However,westillreferthisstatetothesurface-

boundstateforthesakeofcomparison.Theinsertedstates

inbothlipidsarestructurallysimilar,withtheC16tailsof

lipopeptidesembeddedinthemembranehydrophobic

core,leavingtheKGGKpeptidesinthemembrane-solvent

interface.

Asidefromthedifferenceinshape,thetwoPMFsarealso

distinctfromeachotherintheirscales,asshownbytheup-

perlimitsofthecolor-barsinFig.2,AandB.Thisisshown

moreclearlyinthePMFsalongtheMFEPsinFig.3,mak-

ingitevidentthatbindingtotheanionicPOPE:POPGmem-

braneisfarmorefavorablethanbindingtoPOPC.

Moreover,thebindingmechanismandtransitionstates

differsignificantlydependingonthemembranecomposi-

tion.WhenbindingtothePOPE:POPGmembrane,thelip-

the17-and31-merintothe48-meris~22kcal/mol;the

48-merismetastableby~9.0kcal/mol.Atleastsomeof

thisfreeenergydifferenceisduetothefinitesizeofthe

simulationcell;eachadditionallipopeptideaddedtothe

micelleremovesalipopeptidefromthesurroundingbath,

artificiallyincreasingtheentropicpenaltytoaddthenext

one(see‘‘C16-KGGKOligomerizationIsLikelyToBe

Polydisperse’’formoredetails).

Fig.1Bshowsthejointprobabilityofobservingaspecific

lipopeptidemicelle/clustersizeandthenumberofhydro-

phobiccontactsformedamongthelipopeptides.Itisclear

thatamixtureoflipopeptidemicelles/clustersofdifferent

sizesdominatetheglobalPMFminima(xz345),indi-

catingthattheC16-KGGKsolutionispolydisperse(see

C16-KGGKOligomerizationIsLikelyToBePolydisperse

formorediscussion).Itisworthnotingthatatraceamount

ofmonomerscoexistswithbiggeroligomersneartheglobal

minimumaswellasthetransitiontothethirdminimum

(rightmostwellinFig.1A).

PMFsformembranebinding

ThePMFsfora48-C16-KGGKmicellebindingtoamem-

branecontactsareshowninFig.2,AandB.ThesePMFsare

characterizedbyasurface-bound(Fig.2,A1andB1)state

andaninsertedstate(Fig.2,A3andB3).Thesetwostates

arebridgedbyvarioustransitionstates(Fig.2,A2andB2)

residingalongasetofsaddlepointsonthePMFs.Forrefer-

ence,wecalledthecasewherethemicelleisfarawayfrom

themembrane,correspondingtotheupper-rightcornerof

Fig.2,AandB,thefreestate.

WhenthemicellebindstothePOPE:POPGmembrane,

thesurface-boundstate(Fig.2A1)isalocalminimumof

thePMF(Fig.2A),stabilizedbythefavorableinteractions

BiophysicalJournal109(4)750–759

0

200

400

600

800

1000

C16?lipidcontacts

0

20

40

60

80

100

120

140

160

180

200

220

240

PMF(kcal/mol)

0

200

400

600

800

1000

C16?lipidcontacts

0

10

20

30

40

50

60

70

80

90

100

110

120

PMF(kcal/mol)

A3

AB

A1

A3

A2

B2

B3

B1

B3

A1B1

whichcausesthecalculationtounderestimatethestability

weareonlyabletoconcludethatbothminimaarelikely

40

statevarieswithmembranecomposition(seeFig.S4).Toseethisfigure

LipopeptideMicelleThermodynamics755

tothePOPE:POPGmembranegoesfromthesurface-bound

statetotheinsertedstatewitharelativelysmalltransition

barrierof1.3kcal/mol.Incontrast,theMFEPtobindto

thePOPCmembraneencompassesthesurface-boundand

insertedstate,theformerofwhichispartofthetransition

ensemble.Thebarriertomakingthetransitionisboth

veryhighandbroadandpeaksat~79kcal/mol.Theloca-

incolor,goonline.

0

20

MFEP

FIGURE3PMFsinkcal/mol(yaxis)alongtheMFEP(xaxis)as

showninFig.2,AandB,ofbindingaC16-KGGKmicelletoeitherthe

POPE:POPG(solidline)orPOPC(dashedline)lipidmembrane.(Inset,

thePOPE:POPGcurve)Transitionfreeenergybarrieris~1.3kcal/mol.

ThebarrierinthePOPCcaseis~79kcal/mol(labeledbyarrows).Note

thatthepathparameters(xaxis)ofbindingtothetwodifferentmembranes

arenotcomparable,becausethenumberofcontactsformedinthebound

60

80

100

120

140

160

180

200

220

240

PMF(kcal/mol)

79.0kcal/mol

POPE:POPG

POPC

206

207

tionsofthetwoMFEPsinthetwo-dimensionalcontact

spaceareputtogetherinFig.S4forcomparison.

DISCUSSION

Usingfreeenergycalculationsandcoarse-grainedmole-

culardynamicssimulations,wearetryingtoaddressthe

followingquestionsregardingtheoligomerizationofC16-

KGGKandtheoligomers’interactionwithmembranes:

1)whatistheequilibriumdistributionofdifferentC16-

KGGKoligomers,and2)doesoligomerizationalterthe

bindingaffinityofC16-KGGKtomembranes?

C16-KGGKoligomerizationislikelytobe

polydisperse

AsshowninFig.1,themostlikelyoligomerizationstatefor

48C16-KGGKmoleculesistheformationofa17-anda

31-mer,withmonomerspresentonlyoccasionally.This

configurationismorefavorablethanthe48-mermicelle

(secondminimum)byz9.0kcal/mol.However,thisresult

isalteredbythefinitesizeofthesimulationcell;asthe

micelleforms,theconcentrationoffreelipopeptidesdrops,

thermodynamicallyaccessible.Moreover,thesesimulations

aretoosmalltocompletelyrepresentmesoscopicstructures

suchasfibrilsthatwereobservedexperimentallyinthe

caseofasimilarAMLP(23).Althoughthepreciserelative

stabilitiesofdifferent-sizedaggregatesmaybealteredby

thefinitesizeofthecalculation,theumbrellasampling

resultsclearlysuggestthattheC16-KGGKismostlikely

polydisperseinsolution.

Totesttheeffectsofsystemsizeonthedistributionof

oligomers,wealsoranthreeindependentsimulationsof

480C16-KGGKmoleculesatthesameconcentrationas

intheumbrellasamplingones.Thesimulationswerestarted

fromeitherdispersedmonomericlipopeptides,48-mers,or

amixof17-and31-mers;seeSectionS4intheSupporting

Materialformoredetails.Thesizedistributionfunctionsof

theC16-KGGKoligomersfromthesesimulations,shownin

Fig.S6,showthatthetwosystemsstartingfromthetwo

oligomericstatesstayedaroundtheirrespectiveminima

throughoutthesimulations,whiletheonestartingfrom

monomersresultedinamixtureofoligomerswithsizes

rangingfrom10to38lipopeptides.Thisdemonstratesthat

thefreeenergyminimacalculatedfromtheumbrellasam-

pling(Fig.1)areatleastmetastable,regardlessofsystem

size.Thepopulationoflargeraggregatesremainslow

eveninthebiggersimulations,andevenwhentheyoccur,

theyarenotstable.Rather,inthesetrajectoriesthelarge

aggregatesreallyjusttheresultoftwosmalleraggregates

momentarilycolliding,withoutactuallyfusing.Thiscould

beakineticartifact:medium-sizedaggregatesdoareason-

ablejobofhidingtheacylchainsfromsolvent,sofusing

themrequiresthesamekindsofconcertedopeningevents

requiredformembraneinsertion,withsignificantbarriers.

Thus,weconcludethat1)themedium-sizedaggregates

areatleastmetastableattheconcentrationstudied,2)larger

aggregatesareeitherlessfavorablethermodynamically

orformonmuchlongertimescales,and3)asolutionof

C16-KGGKislikelytofeatureabroadrangeofaggregate

sizes.

Micellesgreatlyenhancemembraneselectivity

Giventhebroaddistributionofoligomersizes(Figs.1and

S6),itisnotimmediatelyobviouswhicholigomericstate

ismostrelevanttothemembraneactivityseenexperimen-

tally.Inthisstudy,wechosethe48-merC16-KGGKmicelle

andalipopeptide/lipidof1:10asourmodelsystem

oflargeraggregates.Weproposeasimpleanalyticalcorrec-

tionforthisissue,discussedinSectionS3intheSupporting

Material.Whenreasonablevaluesforthevolumesof

thesystemandindividualmoleculesarepluggedin,the

correctionlowersthefreeenergyofthelargeraggregate

byz24kcal/molrelativetothe17-mer/31-mermix.How-

ever,giventhesignificantuncertaintiesinthecorrection,

BiophysicalJournal109(4)750–759

becausetheexpectedpeptide/lipidinthemembrane-bound

bindingbacterialmammalian

246.7–19.3)z227.4kcal/mol(Fig.2).Indeed,onaper-

ToquantifytostructuralchangesduringC16-KGGK’s

756LinandGrossfield

lipopeptidebasis,bindingtothemodelmammalian

membraneisz0.40kcal/mol,lessthek

B

T,while

bindingtothemodelbacterialmembraneisfavorable

byz5.14kcal/molpermolecule.Thisvalueismuchsmaller

thantheonewehadmeasuredpreviously(26)fortheisolated

lipopeptidesusingthesamemodel,wherebindingtothe

anionicmembranewasfavorablebyC014.5kcal/mol;thedif-

ferencereflectsthestabilityofthemicellerelativetothe

monomerinsolution.

However,theeffectofmicellizationonbindingkinetics

isevenmorestriking.WhereindividualC16-KGGKmole-

culesbindwithoutbarriertobothPCandPE:PGmembranes

(26),micellesexperiencedistinctbarriersthatdependon

themembranecomposition.Thebarriertoenteringa

POPE:POPGbilayerisrelativelysmall(1.3kcal/mol),

particularlyincontrasttothebarriertoenterazwitterionic

POPCbilayer(79kcal/mol).Thedifferenceinbarrierheight

is77.7kcal/mol,suggestingadifferenceinbindingrates

of10

56

.

Thisresulthelpsexplainthefunctionofsimilarlipo-

peptidesinvivo,wherehostmembraneswillgenerally

bemoreabundantthanbacterialones.Barrierlessbinding

suggeststhatisolatedlipopeptideswilltendtobind

strongly(DG
theyencounterfirst,makingithardtounderstandhow

thelipopeptideseverreachedtheirbacterialtargets.

Theseresultssuggestanovelmechanismforselectivity:

bindingtohostmammalianmembraneswillbeslow

andinefficientaslongasthelipopeptidesaremicellized

insolution,whilebindingtothebacterialsurfacewill

stillbeefficient.Toourknowledge,thisfavorableaspect

ofAMLPoligomerizationhasnotbeendiscussedprevi-

ouslyineithertheexperimentalorcomputational

literature.

MolecularbasisforAMLPs’cooperativebinding

tobacterialmembranes

ThecooperativebindingofC16-KGGKmicellestothe

membraneisimportantforitskineticselectivity.Because

thismechanismhasnotbeenexploredpreviously,itisworth

examiningthemolecular-leveldetailsoftheprocess,in

hopesthatwecanusetheinsightstoguiderationaloligo-

merization-basedoptimization.

stateofmanyantimicrobialpeptideswithmicromolarmin-

imalinhibitoryconcentrations(53)isroughlyaroundthis

value.

Theumbrellasamplingresultsforthe48-merC16-KGGK

micellebindingtomembranesshowthatthemicellarstate

hasstrongthermodynamicselectivityforanionicmem-

branes;thethermodynamicbindingaffinityforthemodel

bacterialmembraneismuchhigherthanthatforthemamma-

lianone,yieldingaDDG(DGC0DG?

BiophysicalJournal109(4)750–759

membranebinding,wemeasuredtheorientationofthe

lipopeptide’acylchains,thesizeofthelipopeptide

micelle/aggregation,thehydrationofthelipopeptides,and

thelateralradialdistributionfunctionsofdifferentlipids

indifferentstagesofthisprocess.Thedetailsofthisanalysis

andtheresultsarepresentedinSectionsS5.2,S5.3,S5.4,

andS5.5intheSupportingMaterial.Asdescribedin

SectionsS5.2andS5.5intheSupportingMaterial,the

C16-KGGKmicelleinitiallyboundtothebacterialmem-

braneviaasurface-boundstatestabilizedbyelectrostatic

interactionsbetweenthepeptidesidechainsandthemem-

brane.Theseelectrostaticinteractionswerealsoevidentin

previousbrute-forcesimulationsdonebyourgroup(25),

aswellastheumbrellasamplingsimulationsofmonomers

bindingtomembranes(26);theseinteractionsreducethe

freeenergybarriertobindingbacterialmembranesrelative

tozwitterionicones.Thiscanbeunderstoodfromtwoper-

spectives,asfollows.

First,thelong-rangeelectrostaticsdrawthemicelle

towardthemembrane,effectivelylettingitfalldownhill

towardtheboundstate;thereisnoequivalentinteraction

withzwitterionicmembranes.Itisworthnotingthatthese

calculationswereperformedwith100mMsalt,andthat

thiseffectwouldbestrongerstillinpurewater.Moreinter-

estingly,themicellealteredthelateralstructureofthemem-

brane,concentratingthePOPGlipidsevenwhenthemicelle

isrelativelyfarawayfromthemembrane(Fig.S10A1).

Thissuggeststhatlipopeptides’directcontactwithmem-

branesisnotanecessaryconditiontoinducelipiddemixing.

Thissuggeststhatlipopeptidemicellescouldpossiblyalter

bilayerstructureinawaydeleterioustocellhealthevenif

othercomponentsofthemicrobe’scellsurface,suchas

thelipopolysaccharides,preventedfullbindingand

insertion.

Second,whenthemicelleassociatedwiththemembrane

surface,itrecruitedPOPGlipidstostabilizethesurface-

boundstate.Thesecondstepisparticularlyimportantin

ordertolowerthetransitionbarriertoinsertion,because

thefavorableinteractionscompensatefortheunfavorable

exposureoflipopeptideacylchainstowaterrequiredfor

insertion(Fig.2A2).Thisdemixingofanioniclipidshas

beenproposedasaseparate,pore-independentmechanism

forAMPfunction(54–56).

Withthemammalianmembrane,therewerenofavorable

long-rangeinteractionstodrawthemicelletothemembrane

surface,sothelipopeptideswereinsteadtransferredindivid-

uallyfromthemicelleintothemembranewhilethemicelle

remainedmoreorlessundistortedinsolution;thissituation

continueduntilthemicellebecametoosmalltoeffectively

hidetheremainingacylchains,atwhichpointtheremaining

AMLPsweretransferredsimultaneouslyintothemem-

brane.Thisistheoriginofthelargebarriertoinsertion

seeninFig.2B2.Thiscanalsobeseenfromtheprogression

ofsizedistributionoflipopeptideclusterswherethe

diminishingoligomerslingeredmuchlongerinthebacterial

statebutmuchlesssignificantlysocomparedtothe

membranerapidlyandwithhighaffinity(26),thiswork

S0006-3495(15)00717-1.

2.Jenssen,H.,P.Hamill,andR.E.W.Hancock.2006.Peptideantimicro-

bialagents.Clin.Microbiol.Rev.19:491–511.

LipopeptideMicelleThermodynamics757

mammaliancase(seeSectionS5.2intheSupportingMate-

rial).Thispartialinsertionisduetothemetastabilityofthe

whole48-mermicelleasdiscussedinSectionS4.1inthe

SupportingMaterialaswellasthepresenceoftheanionic

membrane,whichabsorbedtheinsertedmonomersandsta-

bilizedthedegradedmicelleviafavorableelectrostatic

interactions.

Asmentionedabove,therewasaturningpointinthe

mammalianmembranecasewherethemicellebecame

smallenoughsuchthatitsinsertionintothemembrane

becamecooperative(compareFig.S7,B1andB2).The

systemarrivedatacriticalpointwherethebarriertotrans-

ferringonemorelipopeptideintothemembranebalanced-

outthatofpushingtheentireoligomerintothemembrane;

atthispoint,therestofthelipopeptideswentintothemem-

branetogether.Thesizeofthisintermediatemicellewas

somewherebetweena20-anda30-mer,whichwasaround

theequilibriumsizesexpectedinsolution(seeFigs.1and

S6andSectionS4.1intheSupportingMaterial).Thisraises

averyimportantquestionregardingthemembraneselec-

tivityofAMLPs:ifsuchintermediatemicellesarewell

populatedascomparedtolargerones,theAMLP’sbinding

tothemammalianmembraneviatheseintermediatemi-

cellescouldbecomecomparablyfastastothebacterial

membrane.Ifso,onecouldimaginerationallyoptimizing

theoligomerizationstateinordertoimproveselectivity

andreducesideeffectsfromdamaginghostmembranes.

However,doingsowouldrequireustoconsiderthesurface

structuresofdifferentcelltypesastheymightinteractwith

micellesofaspecificrangeofsizes.

CONCLUSIONS

Inthisstudy,weusedcoarse-grainedMDsimulationsofan

antimicrobiallipopeptidetoquantifyitsfreeenergyof

oligomerizationinsolution,aswellasthefreeenergyofa

typicaloligomer’sbindingtotwolipidbilayercom-

positions,chosentomimicbacterialandmammalian

membranes.Ourresultsindicatedthatthislipopeptide,

C16-KGGK,ispolydisperseinsolution,withanequilib-

riumofoligomersofvarioussizes.Whileaprevioussimu-

lationstudyshowedthatthemonomerbindstoany

membranecasethanthemammalianmembranecase,asis

evidentbythehigh-endorangecurvesshowninFig.S8

A2comparedtothoseinFig.S8B2.What’smore,because

theintermediate-sizemicellesaremetastableinwateras

discussedinSectionS4.1intheSupportingMaterial,the

gradualinsertionintothemammalianmembranecase

gaverisetoamoreruggedfreeenergylandscape,especially

aroundthetransitionpeaks(Figs.2Band3).Itisworth

mentioningherethatevenincaseofthebacterialmem-

brane,thelipopeptidescouldbetransferredindividually

fromthemicelleintothemembraneduringthetransition

3.Piddock,L.J.V.2006.Multidrug-resistanceeffluxpumps—notjustfor

resistance.Nat.Rev.Microbiol.4:629–636.

4.Lomovskaya,O.,H.I.Zgurskaya,.,W.J.Watkins.2007.Waltzing

transportersand‘thedancemacabre’betweenhumansandbacteria.

Nat.Rev.DrugDiscov.6:56–65.

5.Hancock,R.E.W.,andH.-G.Sahl.2006.Antimicrobialandhost-de-

fensepeptidesasnewanti-infectivetherapeuticstrategies.Nat.Bio-

technol.24:1551–1557.

6.Straus,S.K.,andR.E.W.Hancock.2006.Modeofactionofthenew

antibioticforGram-positivepathogensdaptomycin:comparisonwith

cationicantimicrobialpeptidesandlipopeptides.Biochim.Biophys.

Acta.1758:1215–1223.

7.Oren,Z.,J.C.Lerman,.,Y.Shai.1999.Structureandorganizationof

thehumanantimicrobialpeptideLL-37inphospholipidmembranes:

relevancetothemolecularbasisforitsnon-cell-selectiveactivity.

Biochem.J.341:501–513.

REFERENCES

1.Koczulla,A.R.,andR.Bals.2003.Antimicrobialpeptides:currentsta-

tusandtherapeuticpotential.Drugs.63:389–406.

ACKNOWLEDGMENTS

WethanktheCenterforIntegratedResearchComputingattheUniversityof

Rochesterforprovidingcomputationalresourcesinourresearch.

ThisworkwassupportedbygrantNo.GM095496fromtheNationalInsti-

tutesofHealth,Bethesda,MD.

AUTHORCONTRIBUTIONS

D.L.andA.G.designedtheresearch;D.L.performedtheresearch;D.L.

contributedanalytictools;D.L.analyzedthedata;andD.L.andA.G.wrote

thearticle.

showedthattheoligomer’sbindingtomembranesneeded

toovercomeasignificantfreeenergybarrierthatvaries

withmembranecomposition.Theresultisenhancedther-

modynamicandkineticselectivityforbacterialversus

mammalianmodelmembranes.

Thisstudysuggestsapossiblenewvariabletoconsider

whenrationallyoptimizingmembrane-activepeptidic

drugs:controllingtheoligomericstateinsolutionwill

varythemechanismofbindingandthusthebindingkinetics

inwaysnotreadilypredictablebyconsideringthemonomer

alone.Giventheotherpracticalbenefitstooligomeriza-

tion—bettersolubility,reducedvulnerabilitytoproteolysis,

etc.—thisinsightmayhelpleadtobetterantibioticsbased

onAMPs.

SUPPORTINGMATERIAL

SupportingMaterialsandMethods,SupportingResults,elevenfigures,and

onetableareavailableathttp://www.biophysj.org/biophysj/supplemental/

BiophysicalJournal109(4)750–759

8.Raimondo,D.,G.Andreotti,.,A.Scaloni.2005.Afolding-dependent28.Louhivuori,M.,H.J.Risselada,.,S.J.Marrink.2010.Releaseof

758LinandGrossfield

mechanismofantimicrobialpeptideresistancetodegradationunveiled

bysolutionstructureofdistinctin.Proc.Natl.Acad.Sci.USA.

102:6309–6314.

9.Strahilevitz,J.,A.Mor,.,Y.Shai.1994.Spectrumofantimicrobial

activityandassemblyofdermaseptin-banditsprecursorforminphos-

pholipidmembranes.Biochemistry.33:10951–10960.

10.Ghosh,J.K.,D.Shaool,.,A.Mor.1997.Selectivecytotoxicityof

dermaseptinS3towardintraerythrocyticPlasmodiumfalciparum

andtheunderlyingmolecularbasis.J.Biol.Chem.272:31609–

31616.

11.Oren,Z.,andY.Shai.2000.Cyclizationofacytolyticamphipathic

a-helicalpeptideanditsdiastereomer:effectonstructure,interaction

withmodelmembranes,andbiologicalfunction.Biochemistry.

39:6103–6114.

12.Feder,R.,A.Dagan,andA.Mor.2000.Structure-activityrelationship

studyofantimicrobialdermaseptinS4showingtheconsequencesof

peptideoligomerizationonselectivecytotoxicity.J.Biol.Chem.

275:4230–4238.

13.Kustanovich,I.,D.E.Shalev,.,A.Mor.2002.Structuralrequire-

mentsforpotentversusselectivecytotoxicityforantimicrobialderma-

septinS4derivatives.J.Biol.Chem.277:16941–16951.

14.Sal-Man,N.,Z.Oren,andY.Shai.2002.Preassemblyofmembrane-

activepeptidesisanimportantfactorintheirselectivitytowardtarget

cells.Biochemistry.41:11921–11930.

15.Fjell,C.D.,J.A.Hiss,.,G.Schneider.2012.Designingantimi-

crobialpeptides:formfollowsfunction.Nat.Rev.DrugDiscov.

11:37–51.

16.Neale,C.,J.C.Y.Hsu,.,R.Pome`s.2014.Indolicidinbindinginduces

thinningofalipidbilayer.Biophys.J.106:L29–L31.

17.Romo,T.D.,andA.Grossfield.2014.Unknownunknowns:thechal-

lengeofsystematicandstatisticalerrorinmoleculardynamicssimula-

tions.Biophys.J.106:1553–1554.

18.Avrahami,D.,andY.Shai.2003.Bestowingantifungalandanti-

bacterialactivitiesbylipophilicacidconjugationtoD,L-aminoacid-

containingantimicrobialpeptides:aplausiblemodeofaction.

Biochemistry.42:14946–14956.

19.Avrahami,D.,andY.Shai.2004.Anewgroupofantifungalandanti-

bacteriallipopeptidesderivedfromnon-membraneactivepeptides

conjugatedtopalmiticacid.J.Biol.Chem.279:12277–12285.

20.Makovitzki,A.,D.Avrahami,andY.Shai.2006.Ultrashortantibacterial

andantifungallipopeptides.Proc.Natl.Acad.Sci.USA.103:15997–

16002.

21.Vallon-Eberhard,A.,A.Makovitzki,.,Y.Shai.2008.Efficientclear-

anceofAspergillusfumigatusinmurinelungsbyanultrashortantimi-

crobiallipopeptide,palmitoyl-lys-ala-D-Ala-lys.Antimicrob.Agents

Chemother.52:3118–3126.

22.Papo,N.,Z.Oren,.,Y.Shai.2002.Theconsequenceofsequence

alterationofanamphipathica-helicalantimicrobialpeptideandits

diastereomers.J.Biol.Chem.277:33913–33921.

23.Makovitzki,A.,J.Baram,andY.Shai.2008.Antimicrobiallipopoly-

peptidescomposedofpalmitoyldi-andtricationicpeptides:invitro

andinvivoactivities,self-assemblytonanostructures,andaplausible

modeofaction.Biochemistry.47:10630–10636.

24.Horn,J.N.,T.D.Romo,andA.Grossfield.2013.Simulatingthemech-

anismofantimicrobiallipopeptideswithall-atommoleculardynamics.

Biochemistry.52:5604–5610.

25.Horn,J.N.,J.D.Sengillo,.,A.Grossfield.2012.Characterizationof

apotentantimicrobiallipopeptideviacoarse-grainedmolecular

dynamics.Biochim.Biophys.Acta.1818:212–218.

26.Lin,D.,andA.Grossfield.2014.Thermodynamicsofantimicrobiallip-

opeptidebindingtomembranes:originsofaffinityandselectivity.

Biophys.J.107:1862–1872.

27.Rzepiela,A.J.,D.Sengupta,.,S.J.Marrink.2010.Membranepora-

tionbyantimicrobialpeptidescombiningatomisticandcoarse-grained

descriptions.FaradayDiscuss.144:431–481.

BiophysicalJournal109(4)750–759

contentthroughmechano-sensitivegatesinpressurizedliposomes.

Proc.Natl.Acad.Sci.USA.107:19856–19860.

29.Marrink,S.J.,A.H.deVries,andA.E.Mark.2004.Coarsegrained

modelforsemiquantitativelipidsimulations.J.Phys.Chem.B.

108:750–760.

30.Marrink,S.J.,H.J.Risselada,.,A.H.deVries.2007.TheMARTINI

forcefield:coarsegrainedmodelforbiomolecularsimulations.J.Phys.

Chem.B.111:7812–7824.

31.Risselada,H.J.,andS.J.Marrink.2008.Themolecularfaceoflipid

raftsinmodelmembranes.Proc.Natl.Acad.Sci.USA.105:17367–

17372.

32.Singh,G.,andD.P.Tieleman.2011.UsingtheWimley-White

hydrophobicityscaleasadirectquantitativetestofforcefields:the

MARTINIcoarse-grainedmodel.J.Chem.TheoryComput.7:2316–

2324.

33.Monticelli,L.,D.P.Tieleman,andP.F.J.Fuchs.2010.Interpretation

of

2

H-NMRexperimentsontheorientationofthetransmembranehelix

WALP23bycomputersimulations.Biophys.J.99:1455–1464.

34.Castillo,N.,L.Monticelli,.,D.P.Tieleman.2013.Freeenergyof

WALP23dimerassociationinDMPC,DPPC,andDOPCbilayers.

Chem.Phys.Lipids.169:95–105.

35.Kasson,P.M.,N.W.Kelley,.,V.S.Pande.2006.Ensemblemo-

leculardynamicsyieldssubmillisecondkineticsandintermediatesof

membranefusion.Proc.Natl.Acad.Sci.USA.103:11916–11921.

36.Yesylevskyy,S.O.,L.V.Scha¨fer,.,S.J.Marrink.2010.Polarizable

watermodelforthecoarse-grainedMARTINIforcefield.PLOSCom-

put.Biol.6:e1000810.

37.deJong,D.H.,G.Singh,.,S.J.Marrink.2013.Improvedparameters

fortheMARTINIcoarse-grainedproteinforcefield.J.Chem.Theory

Comput.9:687–697.

38.Serrano,G.N.,G.G.Zhanel,andF.Schweizer.2009.Antibacterial

activityofultrashortcationiclipo-b-peptides.Antimicrob.Agents

Chemother.53:2215–2217.

39.Kumar,S.,J.M.Rosenberg,.,P.A.Kollman.1992.Theweighted

histogramanalysismethodforfree-energycalculationsonbiomole-

cules.I.Themethod.J.Comput.Chem.13:1011–1021.

40.Chodera,J.D.,andM.R.Shirts.2011.Replicaexchangeandexpanded

ensemblesimulationsasGibbssampling:simpleimprovementsfor

enhancedmixing.J.Chem.Phys.135:194110.

41.Grossfield,A.WHAM:animplementationoftheweightedhistogram

analysismethod.Ver.2.0.5.http://membrane.urmc.rochester.edu/

content/wham/.

42.Zhu,F.,andG.Hummer.2012.Convergenceanderrorestimationin

freeenergycalculationsusingtheweightedhistogramanalysismethod.

J.Comput.Chem.33:453–465.

43.Press,W.H.,S.A.Teukolsky,.,B.P.Flannery.2007.NumericalRec-

ipes:TheArtofScientificComputing,3rdEd.CambridgeUniversity

Press,NewYork.

44.Holoborodko,P.2008–2014.MPFRCtt.http://www.holoborodko.

com/pavel/mpfr/.

45.Lin,D.GWHAM:aCttimplementationofgeneralizedweightedhis-

togramanalysismethod.https://github.com/dejunlin/gwham.

46.E,W.,W.Ren,andE.Vanden-Eijnden.2007.Simplifiedandimproved

stringmethodforcomputingtheminimumenergypathsinbarrier-

crossingevents.J.Chem.Phys.126:164103.

47.Hess,B.,C.Kutzner,.,E.Lindahl.2008.GROMACS4:algorithms

forhighlyefficient,load-balanced,andscalablemolecularsimulation.

J.Chem.TheoryComput.4:435–447.

48.vanderSpoel,D.,E.Lindahl,.,H.J.C.Berendsen.2005.

GROMACS:fast,flexible,andfree.J.Comput.Chem.26:1701–1718.

49.Pronk,S.,S.Pa′ll,.,E.Lindahl.2013.GROMACS4.5:ahigh-

throughputandhighlyparallelopensourcemolecularsimulation

toolkit.Bioinformatics.29:845–854.

50.Nose,S.,andM.L.Klein.1983.Constantpressuremoleculardynamics

formolecularsystems.Mol.Phys.50:1055–1076.

51.Hoover,W.G.1985.Canonicaldynamics:equilibriumphase-space

distributions.Phys.Rev.A.31:1695–1697.

52.Parrinello,M.,andA.Rahman.1981.Polymorphictransitionsinsingle

crystals:anewmoleculardynamicsmethod.J.Appl.Phys.52:7182–

7190.

53.Melo,M.N.,R.Ferre,andM.A.R.B.Castanho.2009.Antimicrobial

peptides:linkingpartition,activityandhighmembrane-boundconcen-

trations.Nat.Rev.Microbiol.7:245–250.

54.Epand,R.M.,andR.F.Epand.2009.Lipiddomainsinbacterialmem-

branesandtheactionofantimicrobialagents.Biochim.Biophys.Acta.

1788:289–294.

55.Epand,R.F.,L.Maloy,.,R.M.Epand.2010.Amphipathichelical

cationicantimicrobialpeptidespromoterapidformationofcrystalline

statesinthepresenceofphosphatidylglycerol:lipidclusteringin

anionicmembranes.Biophys.J.98:2564–2573.

56.Epand,R.M.,andR.F.Epand.2011.Bacterialmembranelipidsinthe

actionofantimicrobialagents.J.Pept.Sci.17:298–305.

LipopeptideMicelleThermodynamics759

BiophysicalJournal109(4)750–759

献花(0)
+1
(本文系一世秋缘首藏)