分享

辣椒疫病防治研究进展

 中人拾柴火焰高 2015-12-29
辣椒疫病是由Phytophthora capsici Leon.所引起的一种毁灭性病害,可经雨水、土壤、气流等多种途径传播,除了引起大面积死秧外,还可造成叶片枯萎、果实腐烂、茎秆出现坏死斑,以及整株萎蔫死亡等多种症状。该病于1918年首次在美国新墨西哥洲发现,现已在世界各辣椒产区普遍发生。近年来,国内很多地方都有大面积发生的报道,损失严重,给辣椒生产带来了很大的影响。由于该病原菌的传播途径多样,病害的发生常呈现暴发性,因此单一的防治方法往往达不到应有的效果,须采取多种措施相结合的综合防治策略。
 1 选用、培育抗病品种防治辣椒疫病 由于辣椒疫病的传播途径多,病原菌的卵孢子在土壤中能长期存活,所以在适宜的温湿度情况下,很容易造成辣椒疫病的暴发流行,使辣椒在短期内大面积枯死。而适宜辣椒生长的季节其温湿度也非常适合于疫霉病菌的生长和繁殖,因此,对辣椒疫病的防治措施中重要的一项工作就是选育抗病品种。1960年Kimble等首次报道辣椒对疫霉菌的抗性,后来研究发现辣椒对疫霉菌的抗性表达受多种因素如温度、水分、接种体浓度、接种时间、接种菌株、接种方法和辣椒生育期等的影响。我国辣椒抗疫病育种研究工作起步较晚,但经过广大科研人员的努力,已建立了一些行之有效的鉴定辣椒抗病品种的方法,并对辣椒抗疫病的机制进行了探讨。黄风莲等研究发现,辣椒抗疫病的性状与植株体内的多酚氧化酶PPO活性、苯丙氨酸裂解酶PAL活性及可溶性蛋白的含量呈正相关,与过氧化物酶POX的活性呈负相关。王兰兰等对16份辣椒材料在6叶期进行苗期人工接种,有3份材料接种后的病情指数低于30,占18,75%,最低的病情指数为22.2,没有高抗品种。刘建华等在1991~1995年间对1 079份辣椒资源进行幼苗6叶期抗性鉴定,以茄门辣椒作感病对照,根据相对抗病性指数(IRR),得到抗病材料60份,占鉴定资源总数的5.56%,耐病、感病、高度感病的材料分别占27.06%、60.24%、7.14%。国外辣椒抗疫病育种工作取得了较大的成绩,鉴定出的SCM334、Perennial等品种具有较好的抗疫病能力,可以作为抗源材料。但总的说来,辣椒抗疫病材料并不丰富,很多只是中抗或耐病品种,很少有高抗品种,更谈不上有免疫品种。另外,辣椒疫霉病菌有很多不同毒力的菌株,在某地被认为是抗病的品种可能在其它地方又成为感病品种。此外,根据国内外有关学者对辣椒抗疫病遗传机制的研究,发现辣椒抗疫病的遗传规律相当复杂,可以说不同的研究者有不同的结论,有的认为是由单基因控制,有的认为是由寡基因控制,但更多的人认为是由多基因控制的。1999年Walker等研究辣椒对辣椒疫霉菌Phytophthora capsici所引起的根腐和叶片枯萎两种症状的抗性遗传时,用两个感病品种Keystore和Earty Jalaperio分别与抗病品种CM334杂交,得到F1代全部表现为抗病。但来源于Earty Jalaperio的F2代对根腐抗性和叶片枯萎抗性的分离比例均为9:3:3:1(r.r/f.r:r.r/f.s:r.s/f.r:r.s/f.s,下同),表明有一个独立的显性基因控制根腐抗性,另外还有一个独立的显性基因控制叶片枯萎抗性。而来源于Keystore的F2代对根腐和枯萎的抗性分离比例为7:2:2:5。出现这样的分离比例,作者认为需要有一个显性基因控制根腐抗性,还有一个不同位点的显性基因控制叶片枯萎抗性,另外在这两个基因中至少有一个基因的等位基因作为第3个基因参与根腐和叶片枯萎抗性的表达。 Hwang等研究了辣椒抗疫病与细胞质雄性不育(CMS)和核雄性不育(GMS)的关系,发现用CMS-A与6个抗疫病材料杂交都可育,表明这些抗疫病材料带有恢复基因型N(s) MsMs。
2 利用栽培技术等农业措施防治辣椒疫病 防治植物病害的主要任务是营造出有利于植物生长发育而不利于病原物生长发育的环境条件,因此可以采用一些农业防治措施来达到这个目标。
2.1 选择合适的肥料 Forster等在温室中用水培法测定磷酸盐和亚磷酸盐作为磷肥对辣椒生长及辣椒疫病的影响,发现用亚磷酸盐作磷肥时,辣椒植株生长矮小,表现出缺磷的症状,而用磷酸盐作肥料时,植株生长正常且辣椒疫病的发生率要低得多。也有报道施用2%的硅肥和硼肥可提高辣椒的抗病性,而锌肥却没有这种效果。
2.2 选择适当的灌溉方式 采用小水沟灌,杜绝大水漫灌,有条件的地方可进行滴灌。Xie等报道1995-1996年在新墨西哥州测定每天滴灌、每3d(天)滴灌和沿沟漫灌3种方式对辣椒品种Newner06-4产量和疫病的影响,发现每天滴灌可以使土壤的湿度适合于辣椒生长而不适合于疫病的发生。
2.3 改进栽培措施 高畦深沟地膜覆盖栽培,北方地区可采用与小麦套作和玉米间作方式,深施有机农家肥。吕和平等经多年调查发现,起垄覆膜栽培、轮作倒茬、合理套作、浅灌控水等措施对防治辣椒疫病有明显的控制作用,在重病区采取这些措施可使病株率降低73.9%,产量提高13%。
2.4 采用嫁接方法 程子林等从10余个辣椒、茄子等材料中筛选出3个对辣椒疫病菌有较强抗性的品种作为砧木,采用靠接、劈接等方法,嫁接成活率达90%-98.7%,防效达95.3%~96%,可增产23%~25%,且辣椒果实外观无明显变化。不过,可能由于商业秘密方面的原因,该文并没有报道用作砧木的品种名称。
2.5 运用生态学方法 Ristaino等认为以生态为基础的有害生物管理(ecologically based pest management,EBPM)策略是防治有害生物最安全、最易操作和可持续发展的一种方法,提出可以从选择适宜的种植地、适时移栽、合理灌溉、注意轮作、及时晒地和补充有机肥、精选抗病品种等诸多方面防治辣椒疫病的发生和为害。
3 化学药剂防治辣椒疫病 由于辣椒疫病的病原菌可在土壤中长期存活,因此辣椒疫病的发生主要与气候、品种抗病性等关系较为密切。病害发生多从侵染根部开始,当地上部分表现症状时,再用化学药剂进行防治可能达不到应有的效果。因此用化学方法防治辣椒疫病也要系统用药,不要等疫病大面积发生才开始用药。具体来说在辣椒育苗时,结合防治苗期的猝倒病、根腐病等病害,喷施1~2次800倍液58%甲霜锰锌可湿性粉剂或1 000倍69%安克锰锌可湿性粉剂;定植后,可用35%霜霉威水剂300倍液、58%甲霜锰锌可湿性粉剂500倍液、80%乙磷铝可湿性粉剂400倍液、69%安克锰锌可湿性粉剂1 000倍液灌根;始花期,每隔10d(天)左右,用58%甲霜锰锌可湿性粉剂500倍液、72%克露可湿性粉剂400倍液、69%安克锰锌可湿性粉剂1 000倍液灌根,连续4-5次,也可进行喷雾,但重点应喷施到根部和茎基部才能有较好的效果。 现有的防治疫病的主要药剂甲霜灵、霜脲氰、乙磷铝等内吸性杀菌剂属于特异性位点抑制剂,对病原菌的作用位点单一,只对病原菌的单一代谢环节起作用,一旦此位点发生突变,药剂即不能与其产生作用,从而导致病菌产生抗药性。因此监测疫霉病菌对甲霜灵、乙磷铝等药剂的抗性及了解病菌的抗性遗传特点、筛选新的药剂成为化学防治疫病的主要目标。罗赫荣等研究发现辣椒疫霉对甲霜灵的抗性由不完全显性基因控制,对霜脲氰的抗性由完全显性基因控制,二者不存在连锁遗传关系,因此可轮用或混用这两种药剂来防治辣椒疫病。目前发现的野生辣椒疫霉菌株已有55.6%存在抗药性,甲霜灵与恶唑烷酮、甲呋酰胺间存在交互抗性,与霜霉威间没有交互抗性。Pennisi等1998年报道从意大利南部地区分离到60个辣椒疫霉病菌菌株,体外测定对杀菌剂甲霜灵的敏感性,筛选到一些不敏感的菌株。 由于现有防治辣椒疫病的主要化学药剂都存在被病原菌克服毒性的可能,因此筛选新的对辣椒疫霉有效的药剂成为一种要求。目前已发现有许多化学物质如碳酸氢钠、氯化钠、硫酸钙、氯化钙等对疫霉菌的生长和病害的发展都有刺激作用,杨君丽在室内测定了3种杀菌剂对辣椒疫病的抑制作用,发现克露(美国杜邦公司生产)的抑菌能力最强,速克灵(日本住友公司生产)次之,利得最弱。Neshev对不同辣椒品种Kurtovska kapiya 1969、Kalinkov 800/7、Albena、Sofia's kapiya、Bucketen进行人工接种,苗期喷施辣椒疫霉菌游动孢子104个/mL。移栽50-60d(天)开始处理,用不同药剂Ambis和Ridomil防治辣椒疫病,然后每15d(天)记载发病率、茎高和产量,发现只有Ambis效果最好,施药1个月后辣椒疫病的发生率仅2/150,产量也最高。ethaboxam是韩国开发的第一个拥有自主知识产权的杀菌剂,于1998年登记,Kim等测定了这种新杀菌剂对黄瓜霜霉病、马铃薯晚疫病和辣椒疫病的防治效果,发现均能控制病害的发生,且优于对照药剂甲霜灵。杨宇红等通过室内和田间试验,筛选出辣椒重茬剂A,对辣椒疫病、白绢病的防效达86.3%,增产25%以上。
4 利用生物技术方法防治辣椒疫病
4.1 筛选拮抗微生物来防治辣椒疫病 从不同生态、植被的土壤中采集样品,筛选拮抗微生物,朱宗源等发现在测定的7425株菌株中,有347株菌株对P. capsici有较好的抑制作用,其中细菌15株,真菌15株,放线菌317株,其中防疫I号和防疫Ⅱ号对辣椒疫病的相对防效分别为80%和60%,更有意义的是防疫I号和防疫Ⅱ号还能促进辣椒植株生长,增加鲜质量,发现防疫工号在土壤中有较强的生存能力。Jubina等从印度不同黑辣椒(Piper nigrmn)产区分离根际细菌进行体内外生物防治试验,发现在194个菌株中,有8个在室内可减少辣椒疫霉病菌孢子的产生,田间试验表明这些根际细菌能有效地控制病害,死亡率为43.5%,而对照为100%,有3种菌株施用90d(天)后还有很好的效果。有人从拮抗菌Pseudomonas aeruginosa B5中提取一种醣酯类抗生素rhamnolipid,室内测定表明该物质在10μg/mL时可抑制疫霉菌(Phytophthora capsici)、尾孢霉(Cercospora kikuchii)、枝孢霉(Cladosporium cucumerinum)、炭疽菌(Colletotrichum orbicular)、稻瘟菌(Magnporthe grisea)的生长,显微镜检查发现辣椒疫霉的游动孢子出现裂解,在25μg/mL,时可抑制游动孢子萌发,50μg/mL时可抑制菌丝生长。另外,从一串红植物根际分离到Serratia marcescens,发现该菌能产生抗生素,对疫霉菌有较强的抑制作用,并利用转座子插入技术诱导该菌发生突变,再通过乙醇、氯仿、硅胶柱层析等步骤将其代谢物纯化,得到灵菌红素(prodigisin),该物质能抑制疫霉休眠孢子的萌发和菌丝的生长。Lee等在室内单独用诱抗剂β-氨基丁酸(DL-β-ammino-n-butyricacid,BABA)1 000μg/mL或联合根际细菌BurkhoMeria cepacia N9523菌株,对辣椒疫病均有很好的防效,BABA在田间也有良好的作用。然而单独用Burkholderia cepacia或联合BABA在田间无明显作用。用拮抗菌Pseudomonas aeruginosa)菌株950923-29联合BABA在田间有良好的作用,单独用二者效果更加好。哈茨木霉Trichoderma harzianum抓在控制辣椒疫病上也有显著的作用。
4.2 利用生物诱导辣椒抗病性 Lee等先接种TMV辣椒菌株,再接种辣椒疫霉的游动孢子,发现辣椒疫病的严重度和病斑均小于对照,从接种叶片中分离到PRl和PR5蛋白,表明接种TMV后诱发辣椒产生系统获得抗性(system acquired resistance,SAR)。用辣椒疫霉菌的冻干菌丝和培养滤液激发抗病品种Smith-5、感病品种Americano和Yolo Wonder的反应,发现它们的电导率发生改变、出现褐变现象以及产生辣椒素和积累病程相关蛋白如葡聚糖酶(EC3.2.1.39)和几丁质酶(EC3.2.1.14),但抗病品种表现出比感病品种的应急反应更快,用冻干菌丝接种后18小时辣椒素积累最快,用培养滤液接种后12h(小时)辣椒素积累最快。发现从疫霉属的4个不同种中分离出4种激发子(elicitin):cactorein、 eapsicein、parasiticein和coyptogcein,能激发植株的防御反应。Nespoulous等通过层析和电泳技术从辣椒疫霉Phytophthora capsici的培养滤液中分离出具有高磷酸酯酶B活性的两个同功酶,分子量分别是X和32Kd,与辣椒疫霉Phytophthora capsici的激发子capsicein有很高的同源性。
4.3 利用基因工程技术防治辣椒疫病 由于辣椒对疫病的抗性是由多基因控制的,因此分离和克隆抗病基因相当困难。但可以将广谱抗真菌基因转化到辣椒植株上,也会得到较好的效果。Sripmsertsak在1999年报道将苯丙氨酸氨基裂解酶基因与编码GUS的报告基因构建一个融合质粒,并用农杆菌介导的叶盘法转化到烟草植株,通过接种致病菌和非致病菌来检测成熟叶片中PSPAL2启动子中GUS的表达情况,用非致病菌Phytophthora capsici接种能检测到过敏性反应HR周围叶片中有GUS表达,尤其是在PSPAL2-FL和PSPAL2-FLdl的转化植株中表达更强烈。
5 今后的发展方向 由于化学药剂对环境污染以及生物多样性的影响,防治植物病害最有效的方法是利用抗病品种,同时给植物一个健康向上的生长环境,即植物健康管理(plant health management,PHM)。植物健康管理比有害生物综合治理(integrated pest management,IPM)的提法年轻,同时PHM建立在IPM基础之上且包括IPM,但不能取代IPM。当今,倡导"科技以人为本",在植物种植过程中,是否也可提出以"植物为中心"的策略来防治植物病虫害呢?答案是肯定的。因此,防治辣椒疫病的关键是提高辣椒的抗病性。可以从三个方面着手:从辣椒栽培品种或野生品种中筛选出高抗的品种;从烟草、黄瓜等其它植物中筛选出对疫霉菌具有高抗或免疫的品种;从微生物中筛选能降解疫霉菌毒素的物种,然后通过品种杂交或基因工程技术将抗病基因或抑菌基因转移到农艺性状优良的辣椒品种中,得到新的抗病品种。其次,充分利用植物资源,从植物中筛选出对病原菌有强烈抑制或杀伤作用的物质,达到人与自然的和谐。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多