2012-03-18 10:43
34643人阅读
评论(36)
收藏
举报
分类:
SIFT特征具有缩放、旋转特征不变性,下载了大牛的matlab版SIFT特征提取代码,解释如下: 1.调用方法: 将文件加入matlab目录后,在主程序中有两种操作: op1:寻找图像中的Sift特征:
- [image, descrips, locs] = sift('scene.pgm');
- showkeys(image, locs);
op2:对两幅图中的SIFT特征进行匹配:
- match('scene.pgm','book.pgm');
由于scene和book两图中有相同的一本书,但orientation和size都不同,可以发现所得结果中Sift特征检测结果非常好。
2.代码下载地址:
http://www.cs./~lowe/keypoints/ 3.想用自己的图片进行调用: - i1=imread('D:\Images\New\Cars\image_0001.jpg');
- i2=imread('D:\Images\New\Cars\image_0076.jpg');
- i11=rgb2gray(i1);
- i22=rgb2gray(i2);
- imwrite(i11,'v1.jpg','quality',80);
- imwrite(i22,'v2.jpg','quality',80);
- match('v1.jpg','v2.jpg');
experiment results:
scene 
book 
compare result EXP2: 
C代码:
- // FeatureDetector.cpp : Defines the entry point for the console application.
- //
-
- #include "stdafx.h"
- #include "highgui.h"
- #include "cv.h"
- #include "vector"
- #include "opencv\cxcore.hpp"
- #include "iostream"
- #include "opencv.hpp"
- #include "nonfree.hpp"
- #include "showhelper.h"
-
- using namespace cv;
- using namespace std;
-
- int _tmain(int argc, _TCHAR* argv[])
- {
- //Load Image
- Mat c_src1 = imread( "..\\Images\\3.jpg");
- Mat c_src2 = imread("..\\Images\\4.jpg");
- Mat src1 = imread( "..\\Images\\3.jpg", CV_LOAD_IMAGE_GRAYSCALE);
- Mat src2 = imread( "..\\Images\\4.jpg", CV_LOAD_IMAGE_GRAYSCALE);
- if( !src1.data || !src2.data )
- { std::cout<< " --(!) Error reading images " << std::endl; return -1; }
-
- //sift feature detect
- SiftFeatureDetector detector;
- std::vector<KeyPoint> kp1, kp2;
-
- detector.detect( src1, kp1 );
- detector.detect( src2, kp2 );
- SiftDescriptorExtractor extractor;
- Mat des1,des2;//descriptor
- extractor.compute(src1,kp1,des1);
- extractor.compute(src2,kp2,des2);
- Mat res1,res2;
- int drawmode = DrawMatchesFlags::DRAW_RICH_KEYPOINTS;
- drawKeypoints(c_src1,kp1,res1,Scalar::all(-1),drawmode);//在内存中画出特征点
- drawKeypoints(c_src2,kp2,res2,Scalar::all(-1),drawmode);
- cout<<"size of description of Img1: "<<kp1.size()<<endl;
- cout<<"size of description of Img2: "<<kp2.size()<<endl;
-
- BFMatcher matcher(NORM_L2);
- vector<DMatch> matches;
- matcher.match(des1,des2,matches);
- Mat img_match;
- drawMatches(src1,kp1,src2,kp2,matches,img_match);//,Scalar::all(-1),Scalar::all(-1),vector<char>(),drawmode);
- cout<<"number of matched points: "<<matches.size()<<endl;
- imshow("matches",img_match);
- cvWaitKey();
- cvDestroyAllWindows();
-
- return 0;
- }
Python代码: http://blog.csdn.net/abcjennifer/article/details/7639681
关于sift的其他讲解:
http://blog.csdn.net/abcjennifer/article/details/7639681
http://blog.csdn.net/abcjennifer/article/details/7372880
http://blog.csdn.net/abcjennifer/article/details/7365882
|