分享

滤波器的设计及比较

 Nora书阁 2016-01-18


有源电力滤波器(Active Power Filter,APF)作为一种用于动态抑制谐波的电力电子装置,其能够同时补偿多次谐波电流,能实时控制、自动跟踪非线性电流并加以控制,有较快的动态 响应速度,且具有改善三相不平衡度的优点。


一、无差拍 SVPWM 的有源滤波器设计


有源电力滤波器作为一种用于动态抑制谐波的电力电子装置,其能够同时补偿多次谐波电流,能实时控制、自动跟踪非线性电流并加以控制,有较快的动态 响应速度,且具有改善三相不平衡度的优点。对于有源滤波器谐波电流检测与补偿电流的发生是其极为关键的技术。


有源电力滤波器的电流控制一般采用PWM(PulseWidth Modulation)模式,目前常用的 PWM控制方式有滞环电流控制(Current Follow Pulse Width Modulation,CFPWM)、三角波电流控制(ΔPulse Width Modulation,ΔPWM) 和 电 压 空 间 矢 量 脉 宽 调 制 (Space Vector PulseWidthModulation,SVPWM)三种技术。对于 SVPWM 其控制方法的优点主要在于:提高逆变器直流侧电压的利用率,减小开关器件的开关频率以及减少谐波成分,而且此方法更易实现数字化。因此,逆变电路控制常采 用此种方法。在 APF 的应用中,SVPWM 常与滞环比较,PI调节器以及无差拍等结合应用。本文采用无差拍 SVP-WM 控制策略,对 APF 的电流进行补偿控制,以获得较好的动态补偿效果。


1 .电力有源滤波器谐波检测方法

有源滤波器的谐波电流检测方法由时域和频域检测法构成。时域检测法主要分为:有功电流分离法和基于瞬时无功功率原理的 p-q 法,ip-iq 法以及 d-q 法等。频域检测法主要有 FFT法和谐波滤波器法等。


对于本文研究主要是采用 ip-iq 法来对电力有源滤波器进行分析研究,由图1可看出其原理。图中虚线框内为直流侧电压反馈控制部分,正余弦信号 sin ωt 和-cos ωt 由锁相环 PLL 发生电路产生。其中 sin ωt 与 a 相输入电压 ua 同相;逆变电路直流侧电压的给定值为 Ucr,Ucf 是反馈值,将这两路信号之差经过 PI 调节器进行调节,所得到的Δip 叠加到瞬时有功电流的直流分量中,经过运算得出指令电流 ih 中所含基波有功电流,从而令 APF 直流侧与交流侧进行能量互换,从而将 Uc 调整到给定值。对于电力有源滤波器而言,滤波器逆变器直流侧信号与交流侧信号的 能量交换是本文研究的关键。



2. 无差拍控制简介


SVPWM 控制是用指令电流 ic*(k) 代替补偿电流 ic*(k+1)使 k 时刻的补偿电流在 k+1时刻完全跟踪上指令电流,但这样会存在一拍的滞后。而基于 SVPWM 的无差拍控制则在 k 时刻预测出 k+1时刻的指令电流值,并以此代替补偿电流,最后通过 SVPWM 控制算法产生PWM 脉冲信号以控制变流器开关器件的通断,从而使每一时刻输出的补偿电流等于其指令电流,实现了实时控制。无差拍 SVPWM 的控制原理如图2所示。



二、LTCC 低通滤波器的设计


LTCC 滤波器的设计通常是基于经典滤波器设计理论,从结构上讲,主要有两种结构,一种是采用传统的 LC 谐振单元结构,谐振单元由集总参数的电容电 感组成,另一种是采用多层耦合带状线结构。本文所设计的低通滤波器采用第一种集总参数形式,理想化低通滤波器电路原理图如图3所示。


本文设计的LTCC滤波器中的集总参数的电容和电感通过 LTCC多层陶瓷集成在陶瓷基板内部。LTCC 内埋植电容的设计一般采用两种方式:垂直交指 型(VIC)电容和金属-介质-金属(MIM)电容。本文设计的滤波器的内埋置电容元件采用垂直交指型(VIC)电容,在相同电容量的情况下,VIC 结构电容相比 MIM 结构电容能够大大减小端电极面积,从而有效减小滤波器尺寸。





LTCC 内埋电感有平面螺旋电感、堆栈螺旋电感、多层螺旋电感等方式,如图 3所示,本文设计的低通滤波器内埋植电感元件采用多层螺旋结构的电感,在相同的有效电感值下此结构比平面螺旋式、堆栈螺旋式等结构具有更高的自谐振频率和品质因子。


模拟示波器数字示波器的区别


示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。

示波器可以分为模拟示波器和数字示波器。


模拟示波器


模拟示波器的工作方式是直接测量信号电压,并且通过从左到右穿过示波器屏幕的电子束在垂直方向描绘电压。

数字示波器


数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。


一、模拟和数字,各有千秋


二十世纪四十年代是电子示波器兴起的时代,雷达和电视的开发需要性能良好的波形观察工具,带宽100MHz的同步示波器开发成功,这是近代示波器的基础。五十年代半导体和电子计算机的问世,促进电子示波器的带宽达到100MHz。六十年代美国、日本、英国、法国在电子示波器开发方面各有不同的贡献,出现带宽6GHz的取样示波器、带宽6GHz的多功能插件式示波器标志着当时科学技术的高水平,为测试数字电路又增添逻辑示波器和数字波形记录器。模拟示波器从此没有更大的进展,开始让位于数字示波器,英国和法国甚至退出示波器市场,技术以美国领先,中低档产品由日本生产。


模拟示波器要提高带宽,需要示波管、垂直放大和水平扫描全面推进。数字示波器要改善带宽只需要提高前端的A/D转换器的性能,对示波管和扫描电路没有特殊要求。加上数字示波管能充分利用记忆、存储和处理,以及多种触发和超前触发能力。廿世纪八十年代数字示波器异军突起,成果累累,大有全面取代模拟示波器之势,模拟示波器的确从前台退到后台。


但是模拟示波器的某些特点,却是数字示波器所不具备的:


操作简单——全部操作都在面板上,波形反应及时,数字示波器往往要较长处理时间。

垂直分辨率高——连续而且无限级,数字示波器分辨率一般只有8位至10位。


数据更新快——每秒捕捉几十万波形,数字示波器每秒捕捉几十个波形。

  

实时带宽和实时显示——连续波形与单次波形的带宽相同,数字示波器的带宽与取样率密切相关,取样率不高时需借助内插计算,容易出现混淆波形。

  

简而言之,模拟示波器为工程技术人员提供眼见为实的波形,在规定的带宽内可非常放心进行测试。人类五官中眼睛视觉十分灵敏,屏幕波形瞬间反映至大脑作出判断,微细变化都可感知。因此,模拟示波器深受使用者的欢迎。

  

二、数字示波器独领风骚

  

八十年代的数字示波器处在转型阶段,还有不少地方要改进,美国的TEK公司和HP公司都对数字示波器的发展作出贡献。它们后来甚至停产模拟示波器,并且只生产性能好的数字示波器。进入九十年代,数字示波器除了提高带宽到1GHz以上,更重要的是它的全面性能超越模拟示波器。出现所谓数字示波器模拟化的现象,换句话说,尽量吸收模拟示波器的优点,使数字示波器更好用。

  

数字示波器首先在取样率上提高,从最初取样率等于两倍带宽,提高至五倍甚至十倍,相应对正弦波取样引入的失真也从100%降低至3%甚至1%。带宽1GHz的取样率就是5GHz,甚至10GHz。

  

其次,提高数字示波器的更新率,达到模拟示波器相同的水平,最高可达每秒40万个波形,对观察偶发信号和捕捉毛刺脉冲就方便多了。

  

对于大多数的电子应用,无论模拟示波器和数字示波器都是可以胜任的,只是对于一些特定的应用,由于模拟示波器和数字示波器所具备的不同特性,才会出现适合和不适合的地方。每一步示波器,都会有一定的特点,也有些不足之处,在选择型号时应留意对比。




    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多